

Mark Scheme

Summer 2023

Pearson Edexcel GCE In Mathematics (9MA0) Paper 01 Pure Mathematics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Question Paper Log Number P72804A_* Publications Code 9MA0_01_2306_MS* All the material in this publication is copyright © Pearson Education Ltd 2023

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.

If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2}+bx+c) = (x+p)(x+q)$$
, where $|pq| = |c|$, leading to $x = ...$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Questi	on Scheme	Marks	AOs
1	$x^{\frac{1}{2}}(2x-5) = \dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}} \text{ or } \frac{x^{\frac{1}{2}}(2x-5)}{3} = \frac{\dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}}}{3}$	M1	1.1b
	$\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3}$	A1	1.1b
	$\int \frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3} dx = \dots x^{\frac{5}{2}} \pm \dots x^{\frac{3}{2}} \ (+c)$	dM1	1.1b
	$\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$	A1	1.1b
		(4)	
			(4 marks)
	Notes		
M1:	Attempts to multiply out the brackets of the numerator and either writes the e	expressio	on (or just the
A1:	numerator) as a sum of terms with indices . Award for either one correct indecomes from a correct method. Condone appearing as terms on separate lines correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ after The $\frac{1}{3}$ does not need to be considered for this mark. $\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3}$ or equivalent e.g. $\frac{1}{3}\left(2x^{\frac{3}{2}} - 5x^{\frac{1}{2}}\right)$. Condone $\frac{2x^{\frac{3}{2}} - 5x^{\frac{1}{2}}}{3}$ May be The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ integrated. Ignore incorrect integration notation around the terms. Ignore any presence of the terms is a sum of terms of the terms.	s for this er they ha implied after the or absence	mark. The ave integrated. by further work. y have ce of dx.
	Be aware that a factor of $\frac{1}{3}$ may be taken outside of the integral so you h	may need	d to look at
	further work to award the first A mark if work on the two terms is done May be unsimplified and the two terms may appear in a list which is fine. Coefficients must be exact.		
dM1:	Increases the power by one on an x^n term where <i>n</i> is a fraction. The index deprocessed. $\frac{3}{2}+1$ $\frac{1}{2}+1$ $\frac{1}{2}$		
	e.g. $x^{\frac{3}{2}+1}$ or $x^{\frac{1}{2}+1}$ It is dependent on the previous method mark so at least have had a correct index.	one of th	e terms must
	Note that integrating the numerator and denominator e.g. $\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3} \rightarrow {3}$	$\frac{x^{\frac{5}{2}}}{3x} - \frac{x^{\frac{3}{2}}}{3x}$	$\frac{1}{2}$ - is dM0.

 $\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ and including the constant or simplified exact equivalent such as A1: $\frac{4}{15}\sqrt{x^5} - \frac{10}{9}\sqrt{x^3} + c \text{ or } \frac{4}{15}x^{2.5} - \frac{10}{9}x^{1.5} + c \text{ or } \frac{1}{45}\left(12x^{\frac{5}{2}} - 50x^{\frac{3}{2}}\right) + c \text{ or } \frac{x^{\frac{7}{2}}}{45}(12x - 50) + c.$ Fractions must be in their lowest terms and indices processed. Do not accept e.g. $0.267x^{\frac{5}{2}} - 1.11x^{\frac{3}{2}} + c$ but allow $0.2\dot{6}x^{\frac{5}{2}} - 1.\dot{1}x^{\frac{3}{2}} + c$ Isw once a correct answer is seen but withhold this mark if there is spurious notation around their final answer e.g. $\int \frac{4}{15} x^{\frac{5}{2}} - \frac{10}{9} x^{\frac{3}{2}} + c \, dx$ is M1A1dM1A0 Alternative method using integration by parts example e.g. $\int x^{\frac{1}{2}} (2x-5) dx = \dots x^{\frac{3}{2}} (2x-5) - \int \dots x^{\frac{3}{2}} dx$ (applies integration by parts correctly to typically M1: achieve this form – the (2x-5) may also be split up as well – send to review if unsure how to mark) This may also be done the other way round e.g. $\int x^{\frac{1}{2}} (2x-5) dx = ...x^{\frac{1}{2}} (x^2-5x) - \int ...x^{\frac{3}{2}} \pm ...x^{\frac{1}{2}} dx$ The $\frac{1}{2}$ does not need to be considered for this mark. A1: A correct intermediate stage applying integration by parts with correct coefficients. e.g. $\left(\frac{x^{\frac{1}{2}}(2x-5)}{3} dx = \frac{2}{3}x^{\frac{3}{2}}\left(\frac{2x-5}{3}\right) - \int \frac{4}{9}x^{\frac{3}{2}} dx$ (or unsimplified equivalent). Coefficients must be exact. (See main scheme notes above) The other way round this could appear as e.g. $\left(\frac{x^{\overline{2}}(2x-5)}{3}dx = \frac{1}{3}x^{\frac{1}{2}}(x^2-5x) - \frac{1}{6}\int x^{\frac{3}{2}} - 5x^{\frac{1}{2}}dx$. Condone a missing dx. May be implied. Increases the power by one on an x^n term where *n* is a fraction e.g. $\int \dots x^{\frac{3}{2}} dx \to \dots x^{\frac{5}{2}}$ The index dM1: does not need to be processed. It is dependent on the previous method mark. $\frac{4}{15}x^{\frac{3}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ or exact simplified equivalent. (See main scheme notes above) A1: Alternative method using the substitution method e.g. let $u = x^{\frac{1}{2}} \Rightarrow \int ...u^4 + ...u^2 du$ (uses a substitution to express the integral in terms of another M1: variable. Allow slips with the coefficients, but the indices should be correct for their substitution) The $\frac{1}{2}$ does not need to be considered for this mark. e.g. $\int \frac{4u^4}{3} - \frac{10u^2}{3} du$ or unsimplified equivalent. Coefficients must be exact. See main scheme A1: notes above). May be implied by further work. Condone a missing dx. $\int ...u^4 + ...u^2 du \rightarrow ...u^5 + ...u^3$ (increases the power by one on at least one of their indices – does not dM1: need to be processed. It is dependent on the previous method mark. $\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ or exact simplified equivalent. (See main scheme notes above) A1: There may be alternative substitutions, but the same marking principles apply.

2(a)	Scheme	Marks	AOs
` ´	$(f(a) =) 4a^3 + 5a^2 - 10a + 4a = 0 \Rightarrow a() = 0$	M1	3.1a
	$a(4a^2 + 5a - 6) = 0 *$	A1*	1.1b
		(2)	
(b)(i)	$a = \frac{3}{4}$	B1	2.2a
(ii)	$4x^{3} + 5x^{2} - 10x + 4 \times "\frac{3}{4}" = 3 \Longrightarrow 4x^{3} + 5x^{2} - 10x (= 1)$	0) M1	1.1b
	x = 0	B1	1.1b
	$x = \frac{-5 \pm \sqrt{185}}{8}$	A1	1.1b
		(4)	
	Notes	(6 marks)
	not allow attempts to find the value of <i>a</i> and substitute that into cult alternative methods may be seen:	f(x)	
Alt 1: You	may see attempts via division / inspection		
$ \begin{array}{r} \frac{4x^2}{x-a} \\ \frac{4x^3}{4x^3} \\ (5) \end{array} $	$\frac{+(5+4a)x}{+5x^{2}} + (-10+5a+4a^{2}) + 4a$ $-4ax^{2} + 4a)x^{2} - 10x$	s remainder $-6a + 5a^2 +$	$-4a^3=0$

Alt 2:	You may also see a grid or an attempt at factorisation via inspection
	$4x^2$ +(5+4a)x +(-10+5a+4a^2)
	$x + 4x^3 + (5+4a)x^2 - (-10+5a+4a^2)x$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	OR $4x^3 + 5x^2 - 10x + 4a \equiv (x - a)(4x^2 + px - 4)$ which should be followed by equating the <i>x</i> terms and x^2 terms to form two equations which can be solved simultaneously. $-10 = -ap - 4$ and $5 = -4a + p \Rightarrow p = 5 + 4a$ $\Rightarrow -10 = -a(5 + 4a) - 4 \Rightarrow 4a^2 + 5a - 6 = 0 \Rightarrow a(4a^2 + 5a - 6) = 0$
	The above are examples. There may be other correct attempts so look at what is done.
M1:	For an attempt to set up two simultaneous equations by equating coefficients for x and equating coefficients for x^2 . Condone slips.
A1*:	$4a^2 + 5a - 6 = 0 \Rightarrow a(4a^2 + 5a - 6) = 0$ Completely correct with no errors.
· ·	ark (i) and (ii) together
(i) B1:	Deduces that $a = \frac{3}{4}$ only. May be implied by their resultant cubic. If they do (b)(ii) multiple times
	using other roots for which $a \neq \frac{3}{4}$, then the solutions arising from using the other roots $a \neq \frac{3}{4}$ must
	be rejected
(ii) M1:	Attempts to substitute their $a = \frac{3}{4}$ (which must be positive) into $f(x)$, sets their $f(x) = 3$ and
	collects terms on one side (= 0 may be implied). Condone arithmetical and sign slips. Condone if they repeat this step using their other root(s).
B1:	(x =) 0
A1:	$(x =) \frac{-5 \pm \sqrt{185}}{8}$ (and these values only) or exact equivalent (ignore 0 for this mark). Withhold this
	mark if the fraction line was clearly not intended to be under both terms. This mark cannot be scored if they proceed directly to the roots from $4x^3 + 5x^2 - 10x$ without taking a factor of or dividing by x first to see the quadratic factor. Isw once the correct answers are seen if they proceed to provide rounded answers after.
	e.g. $4x^3 + 5x^2 - 10x + 4 \times "\frac{3}{4}" = 3 \Longrightarrow 0, \frac{-5 \pm \sqrt{185}}{8}$ is M0B1A0
	e.g. $4x^3 + 5x^2 - 10x = 0 \Rightarrow 0, \frac{-5 \pm \sqrt{185}}{8}$ is M1B1A0
	e.g. $4x^3 + 5x^2 - 10x = 0 \Rightarrow 4x^2 + 5x - 10 = 0 \Rightarrow \frac{-5 \pm \sqrt{185}}{8}$ is M1B0A1
	e.g. $4x^3 + 5x^2 - 10x = 0 \Rightarrow x(4x^2 + 5x - 10) = 0 \Rightarrow 0, \frac{-5 \pm \sqrt{185}}{8}$ is M1B1A1

Questio	n Scheme	Marks	AOs
3 (a)	$(\overline{ OA } =) \sqrt{5^2 + 3^2 + 2^2} = \sqrt{38} *$	B1*	1.1b
		(1)	
(b)	$\overline{ OB } = \sqrt{2^2 + 4^2 + a^2} = \sqrt{20 + a^2}$ so when $a = 5$ $\overline{ OB } = \sqrt{20 + 25} = \sqrt{45}$	M1	1.1b
	= 5	Alcso	2.3
		(2)	
	Notes	(3 n	narks)
(a)	10005		
	Shows the magnitude of $ \overline{OA} $ is $\sqrt{38}$. Must see $\sqrt{5^2 + 3^2 + 2^2}$ or e.g. $\sqrt{25 + 9 + 4}$. We shows the magnitude of $ \overline{OA} $ is formed using the three components. Withhold this mark for invorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} = 5^2 + 3^2 + 2^2 = 38 \Rightarrow \overline{OA} = \sqrt{38}$ but do not penalise poor notation the vorking such as $ \overline{OA} ^2 = 25 + 9 + 4 = 38 \Rightarrow (\overline{OA} = 2) \sqrt{38}$ scores B1 (we see how 38 is found) $ \overline{OA} ^2 = 25 + 9 + 4 \Rightarrow \sqrt{38}$ scores B1 (we see how 38 is found) $ \overline{OA} ^2 = 25 + 9 + 4 \Rightarrow \sqrt{38}$ scores B0 (they are not equal) $ \overline{OA} ^2 = 38 \Rightarrow (\overline{OA} = 2) \sqrt{38}$ scores B0 (no method seen to show how 38 is found)	correct o denote OA instead	d of
(b)			
1	Attempts to find $ \overline{OB} $ (or $ \overline{OB} ^2$) in terms of <i>a</i> and substitutes in a positive integer for <i>a</i> for $ \overline{OB} $ (or $ \overline{OB} ^2$). e.g. $ \overline{OB} = \sqrt{20 + a^2} \Rightarrow$ when $a = 2 \Rightarrow \sqrt{24}$. Also accept e.g. $ \overline{BO} $ (or Alternatively sets up an equation or an inequality e.g. $\sqrt{20 + a^2} > \sqrt{38}$ and proceeds to $a^2 =$). Condone sign slips in their rearrangement only.	$\left \overline{BO}\right ^2$).	
1	Allow the use of =, $<$ or $>$ for this mark. "20"+ a^2 38 $\Rightarrow a^2$ "18"		
	may be implied by sight of $\sqrt{18} = 4.24$)		
) i	is consistent on its own with no incorrect working seen scores M1A1). Withhold this or $\overline{ OB }^2$) is incorrect (or $\overline{ BO }$ or $\overline{ BO }^2$). Do not be concerned with the notation as low intention is clear or implied as to what they are trying to calculate (the calculations model). Withhold this mark if at any point they set $\overline{ OB } < \overline{ OA }$ but accept an argument leading is from either $\overline{ OB } > \overline{ OA }$ or $\overline{ OB } = \overline{ OA }$	ng as the ust be cor	rect)

Quest	ion Scheme	Marks	AOs
4a	$2\alpha + \frac{1}{2}\left(1 - \frac{\alpha}{2}\right)$	M1	1.2
	$2\alpha + \frac{1}{2}\left(1 - \frac{\alpha^2}{2}\right) = 0 \Longrightarrow 2\alpha + \frac{1}{2} - \frac{\alpha^2}{4} = 0 \implies \alpha = \dots$	dM1	1.1b
	$\alpha = -0.243$ (3dp) only	A1	2.3
		(3)	
b	$f'(0) = \frac{1}{2}\cos 0 \Longrightarrow \Longrightarrow y =x + 3$	M1	1.1b
	$y = \frac{1}{2}x + 3$	A1	1.1b
		(2)	
	· · · · · · · · · · · · · · · · · · ·	(5 r	narks)
	Notes		
(a)	Accept to be in terms of α or another variable e.g. x		
	Note: -0.243 with no working is 0 marks		
M1:	Fully substitutes $\cos x = 1 - \frac{x^2}{2}$ into the derivative.		1.
dM1:	Attempts to multiply out to achieve a $3TQ (= 0)$ and attempts to find a value fo Allow solving the quadratic via any method (usual rules apply).	$r \alpha$. Condone s	slips.
	If they use a calculator then you may need to check this.		
A1:	$(\alpha =) - 0.243$ only cao Can only be scored provided a correct 3TQ is seen. If be	oth roots found t	then
	the other one must be rejected (or a choice made of -0.243 e.g. underlining it of	or a tick)	
	Condone $x = -0.243$		
(b)			
M1:	Attempts to find the gradient of the curve when $x = 0$ and achieves an equation $y = "f'(0)"x + 3$.	of the form	
	x = 0 must be fully substituted in and a value must be found for the gradient. D if they attempt to use a changed gradient e.g. the gradient of the normal.	o not allow this	s mark
	Also allow attempts using the small angle approximation:		
	$f'(x) \approx 2x + \frac{1}{2} \left(1 - \frac{x^2}{2} \right)$ when $x = 0$, $f'(0) = "\frac{1}{2}" \Longrightarrow y = "f'(0)"x + 3$		
A1:	$y = \frac{1}{2}x + 3$ or equivalent in the form $y = mx + c$ isw Stating just the values $m =$	= 0.5, c = 3 with	out
	the correct equation is A0		

Ques	tion	Scheme	Marks	AOs
5(8	a)	<i>h</i> = 0.2	B1	1.1b
		$\frac{1}{2} \times "0.2" \times \{a + 13.5 + 2(16.8 + b + 20.2 + 18.7)\} = 17.59$	M1	1.1b
		e.g. $\Rightarrow a+13.5+2b+111.4=175.9 \Rightarrow a+2b=51*$	A1*	2.1
			(3)	
(b)	$a + 16.8 + b + 20.2 + 18.7 + 13.5 = 97.2 \Rightarrow a + b = 28 \Rightarrow a = \dots (\text{ or } b = \dots)$	M1	3.1a
		a = 5 or b = 23	A1	1.1b
	-	a = 5 and $b = 23$	Al	1.1b
			(3)	manles
		Notes	(0	marks)
(a) B1: M1:		s or uses $h = 0.2$ o.e. as the equation $\frac{1}{2} \times "0.2" \times \{a + 13.5 + 2(16.8 + b + 20.2 + 18.7)\} = 17.59$ o.e. but	condone c	copying
	slips. "0.1"	They may have added some of the y values together so as a minimum accept $x \{a+13.5+2(55.7+b)\} = 17.59$	e.g.	
	achie Allow <u>their</u> 2 Cond	Ione invisible brackets as long as they are recovered or implied in further work wing the given answer. Condone the use of \approx for this mark. w this mark if they add the areas of individual trapezia e.g. $\frac{h}{2}\left\{a+16.8\right\} + \frac{\text{their }h}{2}\left\{16.8+b\right\} + \frac{\text{their }h}{2}\left\{b+20.2\right\} + \frac{\text{their }h}{2}\left\{20.2+18.7\right\} + \frac{\text{their }h}{2}\left\{16.8+b\right\} + \frac{1000}{2}\left\{16.8+b\right\} + \frac{1000}{2}\left\{16.8+b\right$	$\frac{r h}{d}$ {18.7 +	
A1*:	brack	orous argument leading to $a + 2b = 51$ from correct working and no errors see tets, although do not penalise a missing trailing bracket at the end e.g.		
		$0.2" \times \{a+13.5+2(16.8+b+20.2+18.7)=17.59 \Longrightarrow \Rightarrow a+2b=51 \text{ could score}\}$		
	$\frac{1}{2}$ × "	0.2 "× $a + 13.5 + 2(16.8 + b + 20.2 + 18.7) = 17.59 \Rightarrow \Rightarrow a + 2b = 51$ could score	e max B11	M1A0
	Both e.g.	ded later work implied correct brackets. sets of brackets must be dealt with correctly before proceeding to the final and $ \Rightarrow a + 2b + 124.9 = 175.9 \Rightarrow a + 2b = 51$ is M1A1* $ \Rightarrow a + 13.5 + 33.6 + 2b + 40.4 + 37.4 = 175.9 \Rightarrow a + 2b = 51$ is M1A1* $ \Rightarrow 0.1a + 1.35 + 3.36 + 0.2b + 4.04 + 3.74 = 17.59 \Rightarrow a + 2b = 51$ is M1A1* that $a + 2b \approx 51$ as the final answer is A0*		that
(b) M1:	(may the g proce	npts to form the equation $a+16.8+b+20.2+18.7+13.5=97.2$, condoning conjust be stated as e.g. $a+b=28$ o.e.) and attempts to solve their equation simulation equation (or condone their equation from part (a)). Do not be too concerness here as calculators may be used. Score if values for a or b are reached from ltaneous equations.	ultaneously and with the	y with
A1:	for a	a = 5 or b = 23		

A1: for both a = 5 and b = 23

Ques	tion Scheme	Marks	AOs
6(:	a) $\frac{1}{2}a$	B1	2.2a
		(1)	
(b		M1	1.2
	=a+b	A1	2.2a
		(2)	
(c	e.g. $8 + \frac{64}{x} = \frac{8x + 64}{x}$	B1	1.1b
) e.g. $8 + \frac{64}{x} = \frac{8x + 64}{x}$ $\log_2 \frac{8}{x}(x+8) = 3 - \log_2 x + \log_2(x+8)$ 3+b-a	M1	1.1b
	3+b-a	A1	2.2a
		(3)	
	N	(6	6 marks)
Cond	Notes one omission of base 2 in all parts.		
(a)	one onnission of base 2 m an parts.		
B1:	$\frac{1}{2}a$ or $\frac{a}{2}$ or 0.5 <i>a</i> isw		
(b) M1:	Takes a factor of x out of the bracket to achieve $\log_2 x(x+8)$ and attempts	to apply the addit	ion law
	of logs, usually leading to $\log_2 x + \log_2 (x+8)$. Condone missing brackets		
	May be implied by a correct answer. Allow this mark to be scored if they v $\log_2 x + \log_2 x + \log_2 8$ (an answer of $2a + 3$ can score M1A0)		
	$\log_2 x \times \log_2 (x+8)$ on its own is M0 but allow the mark to be scored if the	v proceed to $a+b$	
A1:	a+b or simplified equivalent (a correct answer with no incorrect log work		
	Note $\log_2 x \times \log_2 (x+8) = a + b$ is M1A0 (allow the answer to imply the co		
(c)	the final mark)		
B1:	Writes $8 + \frac{64}{x}$ as a single fraction e.g. $\frac{8x+64}{x}$ or $\frac{8}{x}(x+8)$ or $8x^{-1}(x+8)$) or $8\left(\frac{x^2+8x}{x^2}\right)$ w	vhich
	may be implied by later work e.g. $\log_2 8 - \log_2 x + \log_2 (x+8)$		
M1:	Attempts to apply the laws of logs, uses $\log_2 8 = 3$ and proceeds to $3 \pm \log_2 8$	$x \pm \log_2\left(x+8\right)$	
	(or equivalent since $\pm \log_2 x$ may appear as $\pm \log_2 \frac{1}{x}$ or $\pm \log_2 x^{-1}$)		
	May be implied by $3\pm b\pm a$ and condone invisible brackets around $x+8$ a omission of base 2.	nd condone the	
Δ1.	Note that if they write $\log_2(x+8)$ as $\log_2 x + \log_2 8$ this is M0 3 + b - a or simplified equivalent (a correct answer with no incorrect log w	contracon is D1M1	A 1) ion
A1:	3+b-a or simplified equivalent (a correct answer with no incorrect log w Note $\log_2 \frac{8}{x}(x+8) = 3 \div \log_2 x \times \log_2(x+8) \Longrightarrow 3-a+b$ is B1M1A0 (allow		
Nata	correct method but withhold the final mark)	F	J
inote:	You may see attempts to work backwards to the answer.		

Questi	on Scheme	Marks	AOs
7(a)	f(x) > 3	B1	1.1b
		(1)	
(b)	$y = 3 + \sqrt{x - 2} \Longrightarrow x = \dots$	M1	1.1b
	$f^{-1}(x) = (x-3)^2 + 2$	A1	1.1b
	x > 3	B1ft	2.2a
		(3)	
(c)	$f(6) = 3 + \sqrt{6-2} = 5 \Longrightarrow g("5") = \frac{15}{"5"-3} = \dots$	M1	1.1b
	$=\frac{15}{2}$	A1	1.1b
		(2)	
(d)	$3 + \sqrt{a^2 + 2 - 2} = \frac{15}{a - 3} \Longrightarrow "a^2 - 9 = 15"$	M1	1.1b
	$a = 2\sqrt{6}$	A1	2.2a
		(2)	
	Notes		(8 marks)
	f(x) > 3 o.e. e.g. y > 3, range > 3, f(x) ∈ (3,∞), {f(x): f(x) > 3}, f > 3 but not e.g. x Sets $y = 3 + \sqrt{x-2}$ and attempts to make x the subject (or vice versa). Look operations so score for an expression of the form $(x =) (y \pm 3)^2 \pm 2$ or $(y =)$ $f^{-1}(x) = (x-3)^2 + 2$ Also accept $f^{-1}: x \to (x-3)^2 + 2$. Condone $f^{-1} = (x-3)^2 + 2$ but do not allow just $y =$ or $f^{-1}: y =$ Also accept other equivalent expressions such as $f^{-1}(x) = x^2 - 6x + 11$ (simp $x > 3$ or follow through on their part (a). The omission of $x \in \mathbb{R}$ is condon Allow equivalent answers such as $x \in ("3", ∞)$ or $\{x: x > "3"\}$ It is also acceptable to define f^{-1} in any variable e.g. as $f^{-1}(t) = (t-3)^2 + 2$ variable is used consistently to score M1A1B1. If another variable is used of fully defined e.g. $f^{-1}(t) =$ not just $f^{-1} =$	for the co $(x \pm 3)^2 \pm 2$ $(x \pm 3)^2 \pm 2$ (or lifted or the ed. t > 3 as	orrect order of 2 unsimplified) long as the
(c) M1: A1:	Substitutes $x = 6$ into f and substitutes the result into g to find a value for g Allow an attempt to substitute $x = 6$ into $gf(x) = \frac{15}{\sqrt{x-2}}$ condoning slips. T find a value. Condone arithmetical slips and bracket errors/omissions. Condon where when dealing with $\sqrt{x-2}$ leads to two different answers e.g. $\frac{15}{\sqrt{6-2}}$ $\frac{15}{2}$ only oe isw once a correct answer is seen	They mus one for M	

(d) Attempts to form the equation $3 + \sqrt{a^2 + 2 - 2} = \frac{15}{a - 3}$, and proceeds to a quadratic in *a* (usually M1: $a^2 = k$ or $a^2 - k = 15$ but condone arithmetical, miscopying and sign slips. Condone equations which would lead to complex roots. May be implied by a correct exact answer. Alternatively, they attempt to form the equation $a^2 + 2 = f^{-1}g(a) \Rightarrow a^2 + 2 = \left(\frac{15}{a-3} - 3\right)^2 + 2$ \Rightarrow (a+3)(a-3) = 15 \Rightarrow a² -9 = 15 (condone slips) They should be square rooting both sides so that $\sqrt{a^2+2-2} \rightarrow a$, before multiplying both sides by a-3 and rearranging so that the a^2 term comes from their "(a+3)(a-3)" May be implied by a correct exact answer for their quadratic in *a* but a correct decimal answer does not imply this mark. $(a =) 2\sqrt{6}$ or accept $\sqrt{24}$ (they must reject the negative solution if found as $f(a^2 + 2) \neq g(a)$ when A1: $a = -2\sqrt{6}$) $\sqrt{6} \times \sqrt{4}$ is A0 isw $\sqrt{24}$ followed by $4\sqrt{6}$ (incorrect manipulation of the surd) but not followed by $\pm\sqrt{24}$ o.e.

A decimal answer on its own or multiple answers e.g. $\pm \sqrt{24}$ score A0.

Question	n Scheme	Marks	AOs
8(a)	<i>OC</i> ×2.3 = 27.6	M1	1.1b
	e.g. $OC = \frac{27.6}{2.3} = 12 \mathrm{m}^{-8}$	A1*	2.1
(1)		(2)	
(b)	e.g. $(2AOB =) \pi - 2.3$	M1	1.1b
	$\frac{\pi - 2.3}{2} \Rightarrow 0.421 \text{ rad } *$	A1*	2.1
(c)	1	(2)	
(0)	Area $OCDE = \frac{1}{2} \times 12^2 \times 2.3$	M1	1.1b
	$= 165.6 (m^2)$ (accept awrt 166)	A1	1.1b
	$(OB =) \frac{35 - 27.6}{2} + 12 = 15.7 \mathrm{m}$	B1	2.1
	Area of <i>OAB</i> (or <i>OFG</i>) = $\frac{1}{2} \times "15.7" \times 7.5 \times \sin 0.421 (= 24.0m^2)$	M1	1.1b
	Total area = $"165.6"+2 \times "24.1"$	dM1	3.1a
	= awrt 214 (m ²)	A1	1.1b
		(6)	
	Notes	(10	marks)
equation). Values just need to be embedded in an equation or accept an expression for <i>O</i> May work in degrees which is acceptable. Condone an alternative letter being used to denote <i>OC</i> such as <i>r</i> Alternatively, they use $l = r\theta$ with $r = 12$ and $\theta = 2.3$ and verify that $l = 27.6$ m A1*: Achieves an expression for <i>OC</i> before proceeding to $OC = 12$ (m) with no errors seen (co of units) They must show at least $\frac{27.6}{2.3} \Rightarrow OC = 12$ (m) which can score M1A1* $r = \frac{27.6}{2.3} = 12$ is M1A1* (condone alternative letters for <i>OC</i>) BUT e.g. $\frac{27.6}{2.3} = 12$ (m) on its own is M1A0*		en (condo	ne lack
e Ii V e	a.g. $OC \times 2.3 = 27.6 \Rightarrow OC = 12$ (m) is M1A0* In the alternative method they verify $l = 27.6$ and conclude that $OC = 12$ m. We must see the calculation $12 \times 2.3 = 27.6$ and conclude that $OC = 12$ (m) a.g. arc = $12 \times 2.3 = 27.6$ so $OC = 12$ (m) is M1A1* whereas $12 \times 2.3 = 27.6$ is M1. Also allow e.g. if $OC = 12$ (m) then $12 \times 2.3 = 27.6 \checkmark$ is M1A1*	A0*	
	They work in degrees and use rounded values this scores A0* (If they work with	e.g. $\frac{414}{\pi}$	to keep
.1	a angle exact them A 1* can still be seemed)		

the angle exact then A1* can still be scored)

r	
(b) M1:	Attempts to subtract 2.3 from π (which may be implied by an expression for <i>AOB</i> which is not the given answer)
	e.g. $\frac{1}{2}(\pi - 2.3)$ or $\frac{\pi}{2} - 1.15$ score M1
	May work in degrees e.g. 180-awrt132 is M1
	Condone invisible brackets e.g. $\pi - 2.3 \div 2$ can still score M1.
A1*:	Achieves 0.421 (rad) with no errors seen (ignore any side working which is not part of their main solution). Look for a correct expression which is awrt 0.421 before proceeding to the answer. Alternatively, they may write $\alpha \approx 2.4 \Omega R = \pi - 2.3 (-0.8415) \Rightarrow 4 \Omega R = 0.421$
	e.g $2AOB = \pi - 2.3 (= 0.8415) \Rightarrow AOB = 0.421$
	Condone if they do not round their answer at the end to 0.421. Condone lack of units. Condone poor labelling of other angles and it does not require $AOB =$ to score this mark, but do not accept e.g. $ABO =$
	If they work in degrees then withhold this mark if they do not show the conversion back to radians.
	e.g. $\frac{\pi - 2.3}{2} = 0.421$ (rad) is M1A1*
	e.g. $\frac{180 - \text{awrt} 131.8}{2} \div \frac{180}{\pi} = 0.421$ (rad) is M1A1* (conversion from degrees to radians seen)
	e.g. $\pi - 2.3 \div 2 = 0.421$ (rad) is M1A0* (invisible/lack of brackets)
	e.g. $\pi - 2.3 = \frac{0.842}{2} = 0.421$ M1A0* (incorrect joined statement)
(c)	
M1:	Attempts to use $A = \frac{1}{2}r^2\theta$ with $r = 12$ and $\theta = 2.3$ The values embedded in the formula is
	sufficient for this mark. May be implied by a correct answer or further work. Look out for alternative more complex ways to find the area of the sector. e.g. area of semicircle – area of two sectors with $r = 12$ and $\theta = 0.421$
A1:	awrt 166 (may be implied by later work)
B1:	A correct expression or value for the length OB or OF which may be a part of a calculation (may see 15.7 in the equation to find the area of AOB). May be implied by a correct value for the area of a congruent triangle (or both)
M1:	Attempts to find the area of at least one of the two congruent triangles using their OB found from
	$\frac{35-27.6}{2}$ +12 (=15.7), $OA = 7.5$ and $\theta = 0.421$ in $\frac{1}{2} \times OA \times OB \times \sin C$ (may work in degrees)
	Be aware that omitting sine in the formula may give a value close to the area of the triangle which would be M0. Condone use of $\theta = 0.4$ or $\theta = 0.42$ if they have rounded angle <i>AOB</i> .
	The values embedded in the expression is sufficient to score the mark or may be implied by the value.
	Look out for more complex methods to find the area of one or both of the two congruent triangles
	e.g. they may split the congruent triangle into two right angled triangles and add the separate areas.
1	

Other alternatives

e.g. finding the area of the trapezium ABFG: $BF = 2 \times 15.7 \cos 0.421$ Area of $AOB = \frac{1}{2} \left(\left(\frac{15 + 2 \times 15.7 \cos 0.421}{2} \right) \times 15.7 \sin 0.421 - \frac{1}{2} \times 15.7^2 \times \sin 2.3 \right)$ o.e. e.g. finding the length AB and either angle OAB or angle ABO: $AB^2 = 15.7^2 + 7.5^2 - 2 \times 15.7 \times 7.5 \times \cos 0.421 \Rightarrow AB = 9.37...$ $\frac{\sin ABO}{7.5} = \frac{\sin 0.421}{9.37} \Rightarrow ABO = 0.333...$ or $\frac{\sin OAB}{15.7} = \frac{\sin 0.421}{9.37} \Rightarrow OAB = 2.4$

Area of *ABO*
$$\frac{1}{2} \times 15.7 \times 9.37... \times \sin 0.333...$$
 or $\frac{1}{2} \times 7.5 \times 9.37... \times \sin 2.4$

Approximate values are shown below for some of the lengths you may see in calculations:

It is dependent on the previous method marks and the B mark.

A1: awrt 214 (m²) (condone lack of units). Must follow from a correct method. Isw if they round incorrectly.

Ques	tion Scheme	Marks	AOs
9(8	$\frac{12-3k}{3k+4} = \frac{k+16}{12-3k}$	M1	3.1a
	$\frac{3k^2 - 62k + 40}{3k^2 - 62k + 40} = 0 *$	A1*	1.1b
		(2)	1110
(b)	$3k^2 - 62k + 40 = 0 \Longrightarrow k = \dots$	M1	1.1b
	States $k = 20$ and gives a reason e.g. that this gives a values of r such that $ r < 1$	A1	3.2a
(ii		B1	1.1b
	$S_{\infty} = \frac{"64"}{1 - "(-\frac{3}{4})"} = \dots$	M1	3.1a
	$S_{\infty} = \frac{256}{7}$	A1	1.1b
		(5)	
	Notes	(7	marks
	e.g. $\frac{12-3k}{3k+4} = \frac{k+16}{12-3k}$ or $\left(\frac{12-3k}{3k+4}\right)^2 = \frac{k+16}{3k+4}$ or $(12-3k)^2 = (3k+4)(k+16)$ or $(3k+4)\left(\frac{k+16}{12-3k}\right) = 12-3k$ or $(12-3k)\left(\frac{12-3k}{k+16}\right) = 3k+4$ or $3k+4+12-3k+k+16 = \frac{(3k+4)\left(1-\left(\frac{k+16}{12-3k}\right)^3\right)}{1-\frac{k+16}{12-3k}}$ (sum of three terms)		
A1*:	Achieves the given quadratic with no errors including invisible brackets. It cannot b proceeding in one step from the starting equation to the given answer and usually w attempting to multiply out brackets or dealing with any fractions.		2

A1:	20 and gives correct reasoning (if <i>r</i> is found anywhere in part (i) then it must be correct): e.g. 20 since $ r < 1$. e.g. since $ r = 0.75 < 1$ e.g. by listing at least two consecutive terms for $k = 20$ (must be correct) e.g. 64, -48 do not withhold this mark if they proceed to make a comment e.g. "the numbers are getting smaller" as we are condoning this to mean they are referring to the magnitude of the numbers e.g. when $k = 20$, $r = -\frac{3}{4}$ o.e. which is between 1 and -1 (condone "it is smaller than 1").
	Do not accept a reason on its own which is just simply stating that the sequence is converging or equivalent such as "spiralling". Allow reasoning which excludes $k = \frac{2}{3}$ e.g. $r = \frac{5}{3}$ which is greater than 1.
(ii) Worl	x may be seen in part (i), but must be used in part (ii) to score.
B1:	$a = 64$ and $r = -\frac{3}{4}$ o.e. (or allow $a = 6$ and $r = \frac{5}{3}$ o.e.) May be implied by later work or a correct calculation using these values to find S_{∞}
M1:	A full attempt to find S_{∞} by using their value of k to reach a value for r such that $ r < 1$ and a value for a. Condone sign slips in their calculations of a and r only. You may need to check this by substituting in their value for k if no calculations are seen. They must substitute these values in to $\frac{a}{1-r}$ correctly so e.g. $a = 64$, $r = -\frac{3}{4} \Rightarrow S_{\infty} = \frac{64}{1-\frac{3}{4}}$ is M0. They cannot just substitute in their k as r in the formula. Do not allow attempts to manually calculate the values of lots of terms for this mark as this would not lead to the answer. $\sum_{n=1}^{\infty} 64 \times \left(-\frac{3}{4}\right)^{n-1}$ on its own is M0.
A1:	$\frac{256}{7}$ cao. (Do not allow 36.6 as this is not S_{∞}) isw after a correct exact answer is seen.

Γ

Questic	tion Scheme Marks								
10(a)(i	Centre $(-3k, k)$	B1	2.2a						
(ii)	$(x+3k)^2 - 9k^2 + (y-k)^2 - k^2 + 7 = 0 \Longrightarrow (x+3k)^2 + (y-k)^2 = \dots$	M1	1.1b						
	Radius $\sqrt{10k^2-7}$	A1ft	2.2a						
		(3)							
(b)	$x^{2} + (2x-1)^{2} + 6kx - 2k(2x-1) + 7 = 0 \Longrightarrow \dots x^{2} + (pk+q)x + rk + s(=0)$	M1	1.1a						
	$5x^{2} + (2k - 4)x + 2k + 8 (= 0)$	A1	1.1b						
	$(2k-4)^2 - 4 \times 5 \times (2k+8) = 0 \Longrightarrow k = \dots$	dM1	2.1						
	Critical values = $7 \pm \sqrt{85}$ A1								
	$k < "7 - \sqrt{85}$ " or $k > "7 + \sqrt{85}$ " o.e.	ddM1	3.1a						
	$k < 7 - \sqrt{85}$ or $k > 7 + \sqrt{85}$ o.e.	A1	2.5						
		(6)							
	Notes	(9	marks)						
Alft:	Attempts to find r^2 by completing the square and collects terms outside the brack ide of the equation. $(x \pm 3k)^2k^2 + (y \pm k)^2k^2 + 7 = 0 \Rightarrow (x \pm 3k)^2 + (y \pm k)^2$ Alternatively, they may try to use general formulae such as $t^2 + y^2 + 2fx + 2gy + c = 0 \Rightarrow r^2 = f^2 + g^2 - c$ May also be implied by an expression for <i>r</i> . $\sqrt{10k^2 - 7}$ Condone unsimplified equivalent expressions such as $\sqrt{9k^2 + k^2 - 7}$ and his is written with the equation of the circle as $(x + 3k)^2 + (y - k)^2 = 10k^2 - 7$. It m from this and explicitly written as $\sqrt{10k^2 - 7}$ o.e. Do not penalise if their square root does not go fully over all three terms as long as lear. Dolly follow through on a centre of the form $(\pm 3k, \pm k)$ which will lead to a radius Do not allow $\pm \sqrt{10k^2 - 7}$ and do not isw e.g. if they divide their radius by 2 (think bound the diameter) then A0	$= \pm ak^2 \pm b$ d do not al ust be extra the intent of $\sqrt{10k^2}$	low if cacted ion is -7						
A1:	Substitutes $y = 2x - 1$ into the equation of the circle or their manipulated equation of the circle from (a) and attempts to collect terms proceeding to $x^2 + (pk+q)x + rk + s = 0$ where p, q, r and s are all non zero. Condone arithmetical slips and do not be too concerned by the mechanics of their rearrangement. May be implied by $5x^2 + (2k-4)x + 2k + 8 (= 0)$ or by their values for a, b and c in their discriminant. Do not be concerned with the use of $<$, $>$ or $=$ $5x^2 + (2k-4)x + 2k + 8 (= 0)$ (which may be implied by their a, b and c in their discriminant) Do not be concerned with the use of $<$, $>$ or $=$ Check carefully the signs of $2k - 4$ since $4 - 2k$ will lead to the same answers and should score maximum M1A0dM1A0dM1A0								

Attempts to find $b^2 - 4ac$ for their 3TQ and attempts to find at least one critical value. Do not be too dM1: concerned by the mechanics of their rearrangement. If they find the root(s) directly from a calculator you will need to check this. (condone decimals which may be rounded or truncated) It is dependent on the first method mark. Do not be concerned with the use of <, > or = A1: $7\pm\sqrt{85}$ ddM1: Attempts to find the outside region for their critical values. It is dependent on the previous two method marks. (Must have two values to be able to score this mark) States e.g. $k < "7 - \sqrt{85}"$, $k > "7 + \sqrt{85}"$ (condone $k \ge "7 + \sqrt{85}"$, $k \le "7 - \sqrt{85}"$). Condone for this mark $x \leftrightarrow k$ and e.g. "7 + $\sqrt{85}$ " $\leq k \leq$ "7 - $\sqrt{85}$ ". Allow any equivalent expression including set notation which includes both outside regions. Do not penalise poor notation to indicate the outside regions. Condone e.g. "and" o.e for this mark. $k < 7 - \sqrt{85}$ or $k > 7 + \sqrt{85}$ or any equivalent expression including set notation which includes **both** A1: outside regions. e.g. $k < 7 - \sqrt{85}$, $k > 7 + \sqrt{85}$ $\left(-\infty, 7 - \sqrt{85}\right) \cup \left(7 + \sqrt{85}, \infty\right)$ $\left\{k: k \in \mathbb{R}, k < 7 - \sqrt{85}\right\} \cup \left\{k: k \in \mathbb{R}, k > 7 + \sqrt{85}\right\}.$ Allow "," "or", " \cup " or a space between the answers (or on different line) but do not accept "and", If a variable is used it must be in terms of k Do not allow e.g. " $k < 7 - \sqrt{85}$ and $k > 7 + \sqrt{85}$ " or $\left[-\infty, 7 - \sqrt{85}\right] \cup \left[7 + \sqrt{85}, \infty\right]$ isw provided there is no contradiction with the correct answer. Alternative method: Using the formula for the perpendicular distance of a point from a line via a Further Maths method Send to review if you are unsure how to mark these Substitutes the values of 2x - y - 1 = 0 and (-3k, k) into $d = \left| \frac{2(-3k) + (-1)k + (-1)}{\sqrt{2^2 + (-1)^2}} \right|$ M1: Condone sign slips. $(d =) \left| \frac{2(-3k) + (-1)k + (-1)}{\sqrt{2^2 + (-1)^2}} \right|$ A1: dM1: Attempts to proceed from $\left|\frac{2(-3k) + (-1)k + (-1)}{\sqrt{2^2 + (-1)^2}}\right| < \sqrt{"10k^2 - 7"}$ to form a 3TQ (typically $k^2 - 14k - 36 > 0$) and attempts to find the critical values as above via any valid method. Do not be concerned with the use of <, > or =A1ddM1A1: As above

Question	Scheme	Marks	AOs				
11(a)	$\log_{10} V = 3 \Longrightarrow V = 10^3$	M1	1.1b				
	$(V =) \pounds 1000$	A1	3.4				
		(2)					
(b)	e.g. $(\log_{10} b =) \frac{2.79 - 3}{10 - 0} = -0.021$ or $\log_{10} V = 3 - 0.021t$ or	M1	1.1b				
	$10^{2.79} = "1000"b^{10}$		2 11				
	e.g. $b = 10^{-0.021}$ (= 0.952796) or $V = 10^3 \times 10^{-0.021t}$ or $b = \sqrt[10]{"0.61659"}$	M1	3.1b				
	$V = 1000 \times 0.953^{t}$	A1ft (3)	3.3				
(c)	e.g. $V = 1000 \times "0.953"^{24} (= \pounds 315)$						
	or	M1	3.4				
	e.g. $\log_{10} V = 3 - "0.021" \times 24 \Longrightarrow V =(= \pounds 313)$						
	which is close (to $\pounds 320$) so it is a suitable model		2.21				
		A1 (2)	3.2b				
			/ marks)				
	Notes						
T. V	uch as $\left(\log_{10} V = 3 + \frac{2.79 - 3}{10}t \Rightarrow \log_{10} V = 3 \Rightarrow V =\right)10^{3}$ his mark can also be scored for the equation $V = 10^{3} \times 10^{"-0.021"t}$ or $V = 1000 \times ()$ $V = 10^{3-"0.021"t}$ (the 10 ³ has not been split up from $10^{"-0.021"t}$) 1000 cao (including units) do not accept £10 ³	^t but not					
	k (b) and (c) together. Note work seen in (a) must be used in (b) to score						
M1: E	ither						
• fi	nds the gradient between the two points. Score for the expression $\frac{2.79-3}{10-0}$ o.e. e.	.g0.021					
D • fi	Do not condone sign slips for this mark. May be implied by later work such as sight of $10^{-0.021}$. • finds the equation for $\log_{10} V$ in terms of <i>t</i> e.g. $\log_{10} V = 3 - "0.021"t$ which may be unsimplified.						
	ttempts to find the value or an expression for b using their gradient or their equations for either:	ion					
Y	You may need to check this on your calculator.						
• co	• correctly proceeding from $\log_{10} V = 3 - "0.021"t$ to $V = 10^{3-"0.021"t}$ and splitting this into						

 $V = 10^3 \times 10^{-"0.021"t}$

• attempting to equate coefficients:

 $\log_{10} V = \log_{10} a + (\log_{10} b)t \Leftrightarrow \log_{10} V = 3 - "0.021"t \Longrightarrow \log_{10} b = "-0.021" \Longrightarrow b = 10^{"-0.021"}$

- using their equation $10^{2.79} = "1000"b^{10}$ or $2.79 = "3"+10\log b$ and proceeding to e.g. $b = \sqrt[10]{"0.61659..."}$ or $b = 10^{"-0.021"}$
- A1ft: Complete correct equation, follow through on their "1000" so score for V = "1000"×(awrt 0.953)^t or accept V = "10³"×(awrt 0.953)^t. Just stating the values of *a* and *b* is A0ft, but if the equation is written in (c) before substituting in t = 24 then this mark can be awarded.

(c) Mark (b) and (c) together

M1: A full and valid attempt to:

- either substitute t = 24 into their model of the form $V = ab^t$ where *a* is positive and finds a value for *V*
- or substitutes t = 24 into their model of the form $\log_{10} V = p + qt$ where p is positive and finds a value for V (if they only proceed as far as $\log_{10} V$ they would also have to find the value of $\log_{10} 320$)
- or substitutes V = 320 into their $V = 1000 \times 0.953^{t}$ o.e. and finds a value for t

(to enable the candidate to compare real life data with that of the model.)

Do not be too concerned with the mechanics of the solution but they must be attempting to find two values which can be compared (e.g. usually 320 and a value for *V*, but they could proceed to find $\log_{10} 320$ and compare with $\log_{10} V = 2.496$ when t = 24, or a value for *t* to compare with t = 24) In cases with no working you will need to check the calculation.

- A1: Compares their awrt £313-£315 with £320 or their awrt t = 23.5 23.7 with t = 24 or $\log_{10} 320 = 2.505...$ with 2.496 and makes a valid conclusion with a reason. For this mark you require:
 - For this mark you require:
 - correct calculations (if using percentage error allow this to be rounded to compare awrt £313-£315 with £320 then it will be in the range (1.4, 2.4). For £314.94 this is = awrt1.6%)
 - a reason such as "the values are close", "the values are similar", "the values are approximately equal". Allow use of "≈". Allow the calculation of the % error as reason.
 - a statement that it is a "good" or "accurate" model or similar wording.

Note: Condone as a minimum e.g. " \pounds 314.94 and \pounds 320 so good model" (we accept the two values being stated here as a comparison that they are similar)

Do not allow incorrect statements such as the model is incorrect as it does not give £320. Do not allow just "the model gives an underestimate of the true value" (does not comment sufficiently on whether the model is reliable)

Do not allow comments suggesting that the model is not reliable.

Note using the full value for b leads to 313.3285724...

Question	Scheme	Marks	AOs					
12	$\frac{\sin(x+h) - \sin x}{h}$	B1	2.1					
	$\sin x \cos h + \cos x \sin h - \sin x$	M1	1.1b					
	h	A1	1.1b					
	(As $h \to 0$), $\sin x \left(\frac{\cos h - 1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right) \to 0 \times \sin x + 1 \times \cos x$	dM1	2.1					
	so $\frac{dy}{dx} = \cos x$ * A1*							
	Notes	(5 n	narks)					
There is no B1: Giv <u>sin</u> M1: Use A1: Acl	It the question allow the use of $h = \delta x$ if used consistently or requirement to see "gradient of chord" written down. The set the correct fraction such as $\frac{\sin(x+h) - \sin x}{x+h-x}$ or $\frac{\sin x - \sin(x+h)}{-h}$ or $\frac{\sin(x+h)}{x+h-x}$. $\frac{(x-h) - \sin x}{x-h-x}$. Condone invisible brackets. May be implied by $\frac{\sin x \cos h + \cos x \sin h}{h}$ as the compound angle formula for $\sin(x \pm h)$ to give $\sin x \cos h \pm \cos x \sin h$ here $\frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$ or equivalent (may be implied by further work ow invisible brackets to be recovered.	sin <i>h</i> – sin	$\frac{h}{x}$ or $\frac{x}{x}$					
Con $\left(\frac{co}{c}\right)^{2}$ e.g. Acc If th e.g. sco sin Con e.g. Alt	s dependent on both the B and the M marks being awarded. mplete attempt to apply the given limits to the gradient of their chord. They must is $\frac{\cos h - 1}{h}$ and replace with 0 and isolate $\left(\frac{\sin h}{h}\right)$ and replace with 1. $\sin x \left(\frac{\cos h - 1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right) = \sin x \times 0 + \cos x \times 1$ there the a minimum $\sin x \left(\frac{\cos h - 1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right) = \cos x$ (implying the application they do not fully show $\left(\frac{\cos h - 1}{h}\right)$ and $\left(\frac{\sin h}{h}\right)$ being isolated but proceed from $\frac{\sin x (\cos h - 1) + \cos x \sin h}{h}$ to $0 \times \sin x + \cos x$ (or e.g. $0 + \cos x$) then this can be is are dM1 $\frac{x (\cos h - 1) + \cos x \sin h}{h} = \cos x$ is dM0 indone if limit notation remains within their expression after the limits have been applied $\lim_{h \to 0} (\sin x \times 0 + \cos x \times 1)$ ernatively, condone use of the small angle approximations such that $\frac{x \cos h + \cos x \sin h - \sin x}{h} \rightarrow \frac{-\frac{h^2}{2} \sin x + h \cos x}{h} = -\frac{h}{2} \sin x + \cos x$ and replaces $\frac{h}{2}$	n of the li implied as						

A1*: Uses correct mathematical language of limiting arguments to show that $\frac{dy}{dx} = \cos x$ with no errors seen. (cso)

We need to see $h \to 0$ at some point in their solution and linking $\frac{dy}{dx}$ with $\cos x$ e.g.

•
$$\frac{dy}{dx} = \dots = \lim_{h \to 0} \left(\sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) \right) = \cos x$$

• $\frac{dy}{dx} = \dots = \lim_{h \to 0} \left(-\frac{h}{2} \sin x + \cos x \right) = 0 \times \sin x + \cos x = \cos x$ (using small angle approximations)

•
$$\frac{dy}{dx} = \dots = \frac{\sin x(\cos h - 1) + \cos x \sin h}{h} = \sin x \times 0 + 1 \times \cos x = \cos x \text{ as } h \to 0$$

Condone f'(x) or y' in place of $\frac{dy}{dx}$

Give final A0 for no evidence of limiting arguments:

e.g. when
$$h = 0$$
 $\frac{dy}{dx} = ... = \sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) = \sin x \times 0 + \cos x \times 1 = \cos x$ is A0
Do not allow the final A1 for just stating $\frac{\sin h}{h} = 1$ and $\frac{\cos h - 1}{h} = 0$ and attempting to apply

these (without seeing e.g. $h \rightarrow 0$ at some point in their solution)

If they work in another variable (e.g. θ) then withhold the final mark. If they have mixed variables within some of their statements, then allow recovery but withhold the final mark.

Withhold this mark if there has been incorrect bracketing or invisible brackets when isolating $\sin x (\cos h - 1)$ e.g. $\frac{\sin x \cos h - 1 + \cos x \sin h}{h}$ but accept terms written as e.g. $\sin x \frac{\cos h - 1}{h}$ which do not require brackets. Condone a missing trailing bracket if the intention is clear.

Ques	stion						Sch	eme										Marks		AOs
13((a)						<i>a</i> =	= 60										B1		3.1b
						="60"												M1		3.4
	-					H = 6	0 - 0.	145(<i>t</i>	-20) ²								A1		3.3
																		(3)		
(b))					H	Heigh	t=2	m									B1		3.4
																		(1)		
(0	:)						180	,										M1		3.4
					H	<i>I</i> = 29	cos(9	$p_t + 18$	30)°+	31								A1		3.3
																		(2)		
(d	1)			e.g. "T	he moo	del all	ows f	for mo	ore th	an o	ne	circ	uit'	,,				B1		3.5a
																		(1)	_	
																		(7 n	narks)
(a)								Note	Ś											
(a) B1: M1:	mode	el)				_						-		-				d for a is		ie
IVI I :	May	be seen	n as tw	o simul	taneou	s equ	ations	s form	ned:						eam	g to	a va	lue for	D.	
		$a-b(-20)^2$ and $60 = a-b(20-20)^2$ proceeding to a value for b																		
A1:	H =	60 - 0.	145(<i>t</i> –	$(-20)^2$ of	r equiv	alent	such	as H	$=-\frac{1}{2}$	$\frac{29}{200}t$	² +	5.81	t+2	2 or	: H	= 60	$-\frac{2}{20}$	$\frac{9}{00}(t-2)$	$(0)^{2}$	isw
			-	ation fo		nodel	is see	en. M	ust be	e in t	tern	ns c	of H	I and	d <i>t</i> .	If th	ey jı	ust state		
	A co	rrect ar	nswer v	with no	workiı	ng see	n sco	res fu	ll ma	rks.										
(b) B1:		·		ck of un ry to de					l ever	n if tl	heir	r mo	ode	l in	(a) i	s inc	corre	ect (they	' ma	ay
(c)																				
M1:	$(\alpha =$	=) 180 or $(\beta =)$ 31 Condone $(\alpha =) \pi$																		
A1:	H =	$H = 29\cos(9t + 180)^\circ + 31$ or equivalent e.g. $H = -29\cos(9t) + 31$ is wonce a correct equation for							for											
	the model is seen. Must be in terms of H and t. If they just state $\alpha = 180$, $\beta = 31$ then A0.																			
	A co	rrect ec	luation	with n	o work	ing se	een sc	ores	both 1	nark	ts. I	Doe	es n	ot re	equi	re th	e de	gree syı	nbc	ol.
(d) B1:	 th th th th th th Do n If cal Look 	ne alter cyclica ne alter ne origi eight w ne origi ot allow culatio	native l", "pe native inal/qu vill be inal mo w vagu ns are valid re	riodic", model a adratic negative odel afte e respo- used the eason ar	allows "loop after 2 model e whic er 2 mi nses of en they ad ignc	repeti s arou minut after h canr nutes n their muss re ref	ition (ind", ' tes the 40 se not ha woul c own t be c erenc	allow the c conds ppen d not e.g. ' orrect e to a	y phra prigin iage v (or a ") be ba 'the o t usin nythi	al m will ny t ck a origin g a c ng e	ode be l ime at th nal corr lse	el ca bacl e aft ne st mo ect as l	an c k at ter t tart del mo <u>long</u>	is a del	go star) wi par (allo it d	up an t (e. 1 be abola ow re	nd d g."a nega a" ounc not c	peated c own one t 2 mins ative (e. ded or tr	ce") 5, <i>H</i> g. " unc) = 2 ") 'the
	t	0		10 15		25	30	35	40	45		50	-	5	60	80		$\frac{00}{120}$		
	h	2	27 4	46 56	60	56	46	27	2	-31	l -	-71	-1	18 -	-172	-46	2 -8	68 -139	0	

Questi	on Scheme	Marks	AOs			
14	When <i>n</i> is even: $(2k+1)^3 - (2k)^3 = 8k^3 + 12k^2 + 6k + 1 - 8k^3 = 6k(2k+1) + 1$					
	\Rightarrow which is odd or	M1	3.1a			
	When <i>n</i> is odd: $(2k+2)^3 - (2k+1)^3 = 8(k^3 + 3k^2 + 3k + 1) - (8k^3 + 12k^2 + 6k + 1) = 6k(2k+3) + 7$ \Rightarrow which is odd When <i>n</i> is even: $(2k+1)^3 - (2k)^3 = 8k^3 + 12k^2 + 6k + 1 - 8k^3 = 6k(2k+1) + 1$ \Rightarrow which is odd and When <i>n</i> is odd:					
	$(2k+2)^{3} - (2k+1)^{3} = 8(k^{3}+3k^{2}+3k+1) - (8k^{3}+12k^{2}+6k+1) = 6k(2k+3)+7$ $\Rightarrow \text{ which is odd}$					
	Hence odd for all $n \in \mathbb{N}$ *	A1*	2.4			
	NT. 4	(4	marks)			
	Notes General guidance					
You w Allow	 Withhold the final mark if n is used instead of k or reference to n ∈ R but n ∈ Z⁺ is acceptable. Main scheme algebraic method using e.g. n = 2k and n = 2k±1 You will need to look at both cases and mark the one which is fully correct first. Allow a different variable to k and may be different letters for odd and even M1: For the key step attempting to find (n+1)³ - n³ when n = 2k or n = 2k±1 and attempting to multiply out and simplify to achieve a three term quadratic (allow equivalent representation of odd or even e.g. n = 2k+2 or 2n±5) Condone arithmetical slips and condone the use of e.g. n = 2n and n = 2n±1 					
 A1: Complete argument for n = 2k or n = 2k + 1 (or e.g. n = 2k - 1) showing the result is odd. Requires: Correct simplified quadratic expression e.g. 12k² + 6k + 1 (when n = 2k), 12k² + 18k + 7 (when n = 2k + 1), 12k² - 6k + 1 (when n = 2k - 1) (may be factorised) A reason why the expression is odd e.g. 2k(6k + 3) + 1 or may use a divisibility argument e.g. 12k² + 6k + 1/2 = 6k² + 3k + 1/2 Concludes "odd" o.e. (may be within their final conclusion) There should be no errors in the algebra but allow e.g. invisible brackets if they are "recovered" Condone the use of e.g. n = 2n and n = 2n±1 						
dM1:	Attempts to find $(n+1)^3 - n^3$ when $n = 2k$ and $n = 2k \pm 1$ and attempts to multiply out and simplify to achieve a three term quadratic (allow equivalent representation of odd or even e.g. $n = 2k + 2$, $2n \pm 5$ Condone arithmetical slips and condone the use of e.g. $n = 2n$ and $n = 2n \pm 1$					

A1*: Complete argument for **both** n = 2k and n = 2k+1 (or e.g. n = 2k-1) showing the result is odd for all $n \in \mathbb{N}$

Requires for both cases:

- Correct simplified expressions for both odd and even (which may be factorised)
- A reason why both of the expressions are odd
- Minimal conclusion (may be within their final conclusion)

An overall conclusion is also required. "Hence odd for all $n \in \mathbb{N}$ " Accept "hence proven", "statement proved", "QED"

The conclusion for when n = 2k and n = 2k+1 may be within the final conclusion rather than separate which is acceptable e.g. "when n = 2k and when n = 2k+1 the expression is odd, hence proven" (following correct simplified expressions and reasons)

	$(n+1)^3$	n^3	$(n+1)^3 - n^3$
n = 2k - 1	$8k^3$	$8k^3 - 12k^2 + 6k - 1$	$12k^2 - 6k + 1$
n = 2k	$8k^3 + 12k^2 + 6k + 1$	$8k^3$	$12k^2 + 6k + 1$
n = 2k + 1	$8k^3 + 24k^2 + 24k + 8$	$8k^3 + 12k^2 + 6k + 1$	$12k^2 + 18k + 7$

Alternative methods:

Algebraic with logic example

- M1: Attempts to multiply out the brackets and simplifies to achieve a three term quadratic. Condone arithmetical slips.
- A1: Correct quadratic expression $3n^2 + 3n + 1$
- dM1: Attempts to factorise their quadratic such that $n^2 + n \rightarrow n(n+1)$ within their expression e.g. 3n(n+1)+1
- A1*: Explains that e.g. n(n+1) is always even as it is the product of two consecutive numbers so

3n(n+1) is odd \times even = even so 3n(n+1)+1 is odd hence odd for all $n \in \mathbb{N}$

Proof by contradiction example

- M1: Attempts to multiply out the brackets and simplifies to achieve a three term quadratic.
- A1: Correct quadratic expression $3n^2 + 3n + 1$
- dM1: Sets $3n^2 + 3n + 1 = 2k$ (for some integer k) $\Rightarrow 3n(n+1) = 2k 1$

A1*: Explains that n(n+1) is always even as it is the product of two consecutive numbers so 3n(n+1) is odd \times even = even but 2k-1 is odd hence we have a contradiction so $(n+1)^3 - n^3$ is odd (for all $n \in \mathbb{N}$). There must have been a correct opening statement setting up the contradiction e.g. "assume that there exists a value for *n* for which $(n+1)^3 - n^3$ is even"

Solutions via just logic (no algebraic manipulation)

e.g.

If *n* is odd, then $(n+1)^3 - n^3$ is even³ - odd³ = even - odd = odd

If *n* is even, then $(n+1)^3 - n^3$ is $odd^3 - even^3 = odd - even = odd$

Both cases must be considered to score any marks and scores SC 1010 if fully correct

Further Maths method (proof by induction

- M1: Assumes true for n = k, substitutes n = k + 1 into $(n + 1)^3 n^3$, multiplies out the brackets and attempts to simplify to a three term quadratic e.g. $3k^2 + 9k + 7$ Condone arithmetical slips
- A1: $(f(k+1) = 3k^2 + 3k + 1 + 6(k+1) =) (k+1)^3 k^3 + 6(k+1) = f(k) + 6(k+1)$ which is odd + even = odd
- dM1: Attempts to substitute $n = 1 \implies (1+1)^3 1^3 = 7$ (which is true) (Condone arithmetical slips evaluating)
- A1*: Explains that
 - it is true when n = 1
 - if it is true for n = k then it is true for n = k+1
 - therefore it is true for all $n \in \mathbb{N}$

Question	Scheme	Marks	AOs
15(a)	$\dots xe^x + \dots e^x$	M1	1.1b
	$k(xe^{x}+e^{x})$	A1	1.1b
	$\frac{d}{dx}\left(\sqrt{e^{3x}-2}\right) = \frac{1}{2} \times 3e^{3x} \left(e^{3x}-2\right)^{-\frac{1}{2}}$	B1	1.1b
	$(f'(x) =) \frac{(e^{3x} - 2)^{\frac{1}{2}} ("7"xe^{x} + "7"e^{x}) - "\frac{3}{2}"e^{3x} (e^{3x} - 2)^{-\frac{1}{2}} \times "7"xe^{x}}{e^{3x} - 2}$	dM1	2.1
	$f'(x) = \frac{7e^{x} (e^{3x} (2-x) - 4x - 4)}{2(e^{3x} - 2)^{\frac{3}{2}}}$	A1	1.1b
		(5)	
(b)	$e^{3x}(2-x)-4x-4=0 \Rightarrow x(e^{3x}\pm)=e^{3x}\pm$	M1	1.1b
	$\Rightarrow x = \frac{2e^{3x} - 4}{e^{3x} + 4} *$	A1*	2.1
		(2)	
(c)	Draws a vertical line $x = 1$ up to the curve then across to the line $y = x$ then up to the curve finishing at the root (need to see a minimum of 2 vertical and horizontal lines tending to the root)	B1	2.1
		(1)	
(d)(i)	$x_2 = \frac{2e^3 - 4}{e^3 + 4} = 1.5017756$	M1	1.1b
	$x_2 = $ awrt 1.502	A1	1.1b
(ii)	$\beta = 1.968$	dB1	2.2b
		(3)	
(e)	$h(x) = \frac{2e^{3x} - 4}{e^{3x} + 4} - x$ h(0.4315) = -0.000297 h(0.4325) = 0.000947	M1	3.1a
	 Both calculations correct and e.g. states: There is a change of sign e.g f'(x) is continuous α = 0.432 (to 3dp) 	Alcao	2.4
		(2)	
	NT /	(13	marks)
	Notes mpts the product rule on xe^x (or may be $7xe^x$) achieving an expression of the is clear that the quotient rule has been applied instead which may be quoted th		$x \pm \dots e^{x}$.
A1: $k(x)$ work	$e^{x} + e^{x}$ (e.g. 7($xe^{x} + e^{x}$)) or equivalent which may be unsimplified (may be i x)	mplied by	further
B1: $\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)$	$\left(\sqrt{e^{3x}-2}\right) = \frac{1}{2} \times 3e^{3x} \left(e^{3x}-2\right)^{\frac{1}{2}}$ (simplified or unsimplified)		

dM1: Attempts to use the quotient rule. It is dependent on the previous method mark.
Score for achieving an expression of the form
$$\frac{(e^{x_1} - 2)^{\frac{1}{2}}("7"xe^{x_1} + "7"e^{x_1}) - "\frac{3}{2} * e^{x_1}(e^{x_2} - 2)^{\frac{1}{2}} \times "7"xe^{x_1}}{e^{x_2} - 2} \quad \text{or equivalent (do not be} \\
\text{concerned by the constants for their "7" or their " $\frac{3}{2}$ " which may be both 1)
If it is clear that the quotient rule has been applied the wrong way round then score M0.
Alternatively, applies the product rule. Score for achieving an expression of the form
$$(f'(x) =) (e^{x_1} - 2)^{\frac{1}{2}}("7"xe^{x_1} + "7"e^{x_1}) - "\frac{3}{2}"e^{3x_1}(e^{3x_2} - 2)^{\frac{1}{2}} \times "7"xe^{x_2} \text{ or equivalent (do not be} \\
\text{concerned by the constants for their "7" or their " $\frac{3}{2}$ " which may be both 1)
Do not condone invisible brackets.
A1:
$$(f'(x) =) \frac{7e^{x_1}(e^{3x_2} - 2)^{\frac{3}{2}}}{2(e^{2x_2} - 2)^{\frac{3}{2}}} \text{ following a fully correct differentiated expression.} \\
\frac{41:}{2(e^{3x_2} - 2)^{\frac{3}{2}}} \text{ Vou may need to check to see if (a) is continued after other parts for evidence of this.
Condone the lack of f'(x) = 0 nthe left hand side or allow the use of $\frac{dy}{dx}$ or y' instead.
$$\frac{d}{dx} \left(7xe^{x_1}(e^{3x_2} - 2) + 7xe^{x_1}(e^{1x_2} - 2)^{\frac{1}{2}} + 7xe^{x_1}(e^{1x_2} - 2)^{\frac{3}{2}} + 7xe^{x_1}(e^{1x_2} - 2)^{\frac{3}{2}} \right) = \frac{7e^{x_1}(e^{3x_2} - 2x^{\frac{3}{2}})}{(e^{3x_2} - 2)^{\frac{3}{2}}} = \frac{7e^{x_1}(e^{3x_2} - 2x^{\frac{3}{2}})}{(e^{3x_2} - 2x^{\frac{3}{2}})} = \frac{7e^{x_1}(e^{3x_2} - 2x^{\frac{3}{2}})}{(e^{3x_2} - 2x^{\frac{$$$$$$$$

- only for this mark. Allow A and B to be used instead of "-4" and "-4"
 - w A and b to be used instead of -4 and -4

A1*:	Achieves the given answer with no errors including invisible brackets. If they do not reach the
	printed answer then it is A0. If they subsequently write $x_{n+1} = \frac{2e^{3x_n} - 4}{e^{3x_n} + 4}$ then isw
(-)	$e^{5x_n} + 4$
(c) B1:	Starting at $x_1 = 1$ look for at least 2 sets of vertical and horizontal lines drawn (may be dashes) tending to β . Condone a lack of arrows on the lines but the sequence of lines should finish at the point of intersection where the root is. Condone the initial vertical line not starting from the <i>x</i> -axis. Mark the intention to draw horizontal and vertical lines. If they have any lines to the left of $x = 1$ this is B0. If they use both diagrams and do not indicate which one they want marking, then the "copy of Diagram 1" should be marked.
	Examples scoring B1: $ \begin{array}{c c} Framples scoring B0: \\ $
(d)(i) M1: A1: (d)(ii)	Substitutes 1 into the iterative formula. The values embedded in the formula is sufficient for this mark. May be implied by awrt 1.50 awrt 1.502 isw
dB1: SC:	1.968 cao (which can only be scored if M1 is scored in (d)(i)) If (d)(i) is rounded to 1.50 then allow 1.97 in (d)(ii) to score M1A0dB1 for (d)
	Attempts to substitute $x = 0.4315$ and 0.4325 into a suitable function and gets one value correct (rounded or truncated to 1sf). It is allowable to use a tighter interval that contains the root 0.4317388728 If no function is stated then may be implied by their answers to e.g. f'(0.4315), f'(0.4325) You will need to check their calculation is correct. Other possible functions include: $h(x) = x - \frac{2e^{3x} - 4}{e^{3x} + 4} \text{ (other way round to MS) } h(0.4315) = 0.0002974, h(0.4325) = -0.0009479$ their f'(x) = $\pm \left(\frac{7e^x \left(e^{3x} (2 - x) - 4x - 4 \right)}{2(e^{3x} - 2)^{\frac{3}{2}}} \right)$
	(If correct A and B then $f'(0.4315) = \mp 0.005789$, $f'(0.4325) = \pm 0.01831$)
• A1:	 their g(x) = ±(e^{3x}(2-x)-4x-4) (If correct <i>A</i> and <i>B</i> then g(0.4315) = ∓0.002275, g(0.4325) = ±0.007261) Requires Both calculations correct (rounded or truncated to 1sf) A statement that there is a change in sign and that their function is continuous (must refer to the function used for the substitution (which is not f(x)) Accept equivalent statements for f'(0.4315) < 0, f'(0.4325) > 0 e.g. f'(0.4315) × f'(0.4325) < 0, "one negative one positive". A minimum is "change of sign and continuous" but do not allow this mark if the comment about continuity is clearly incorrect e.g. "because x is continuous" or "because the interval is continuous". A minimal conclusion e.g. "hence α = 0.432 ", "so rounds to 0.432". Do not allow "hence root"

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom