

AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/2)

Paper 2

Specimen 2020

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

mathematical instruments

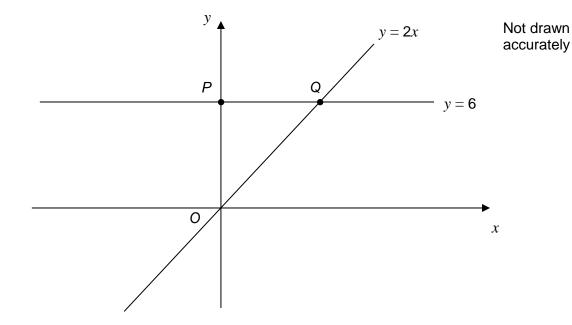
You may use a calculator

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.


Please write clearly, in block capitals,	to allow character computer recognition.
Centre number C	Candidate number
Surname	
Forename(s)	
Candidate signature	

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

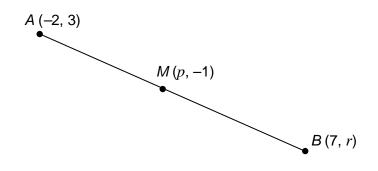
Answer all questions in the spaces provided.

1 A sketch of the lines y = 2x and y = 6 is shown.

Work out the area of triangle OPQ.

[3 marks]

	_
Answer	units ²
Answer	un


2 A circle, centre (0, 0) has circumference 20π

Work out the equation of the circle.

[2 marks]

Answer		

3 M is the midpoint of the line AB.

Not drawn accurately

Work out the values of p and r.

[2 marks]

$$p =$$

4 (a) Circle the solution of
$$-3x < -18$$

[1 mark]

$$x > -6$$
 $x < -6$ $x > 6$ $x < 6$

$$r \setminus 6$$

4 (b) Circle the solution of
$$x^2 \ge 16$$

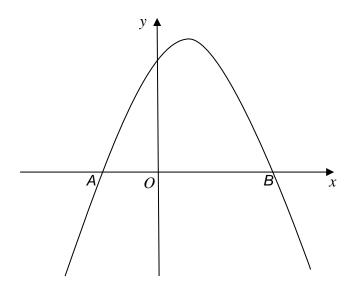
[1 mark]

$$x \geqslant -4$$
 or $x \leqslant 4$

$$x \leqslant -4$$
 or $x \geqslant 4$

$$x \geqslant -4$$
 or $x \geqslant 4$

$$x \leqslant -4$$
 or $x \leqslant 4$


WWW. Mynainscloud.com

5 Here is a sketch of y = f(x) where f(x) is a quadratic function.

The graph

intersects the x-axis at A (-1, 0) and B

has a maximum point at (0.5, 6)

Not drawn accurately

5 (a) Work out the coordinates of *B*.

[1 mark]

5 (b) The equation f(x) = k has exactly **one** solution.

Write down the value of k.

[1 mark]

Answer _____

$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} s \\ -5 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -1 \\ t \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 2 & 1 \\ 7 & u \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} s \\ -5 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} -1 \\ t \end{pmatrix}$$

$$\mathbf{D} = \begin{pmatrix} 2 & 1 \\ 7 & u \end{pmatrix}$$

s, *t* and *u* are constants.

6 (a)
$$AB = C$$

Work out the values of s and t.

[3 marks]

$$s =$$

6 ((b)	AD =	I
•	\~ <i>,</i>		•

Work out the value of u.

Work out the equation of the straight line that is 7

parallel to the line 2y = x

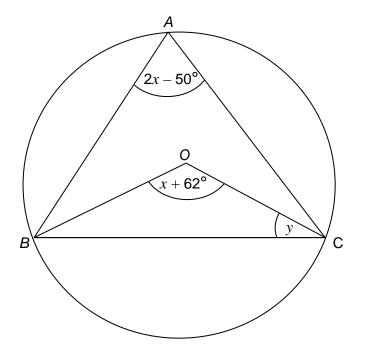
and

intersects the x-axis at (4, 0)

[3 marks]

8 (a) Work out
$$\frac{ab}{cd} \div \frac{bc}{aa}$$

Give your answer as a single fraction in its simplest form.


[2 marks]

8 (b) Work out
$$\frac{7}{2x^2} + \frac{4}{3x}$$

Give your answer as a single fraction in its simplest form.

[2 marks]

9 A, B and C are points on a circle, centre O.

Not drawn accurately

Work out the size of angle y.		[5 marks]
Answer	degrees	

$$y = \frac{6x^9 + x^8}{2x^4}$$

Work out the value of $\frac{d^2y}{dx^2}$ when x = 0.5

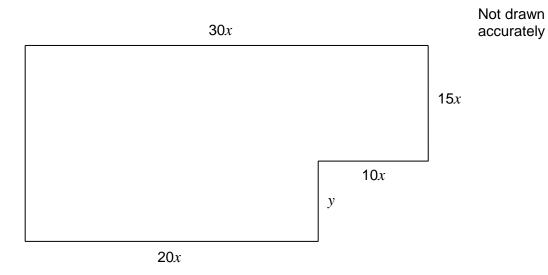
[5 marks]

11 For sequence A, nth term = $\frac{n}{14n + 30}$

For sequence B,
$$n$$
th term = $\frac{2}{n}$

The kth term of sequence A equals the kth term of sequence B.

Answer


Work out the value of k.

You **must** show your working.

[4 marks]

12 This shape is made from two rectangles.

All dimensions are in centimetres.

12 (a) The perimeter of the shape is 252 cm

Show that y = 126 - 45x

[2	mar	ks]
----	-----	-----

12 (b)	The area of the shape is A	cm
12 (8)	The area of the shape is 11	OIII

12 (c)

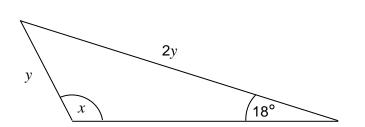
how that $A = 2520x - 450x^2$	
	[2 marks
se differentiation to work out the maximum value of A as x varies.	
se differentiation to work out the maximum value of \boldsymbol{A} as \boldsymbol{x} varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks
se differentiation to work out the maximum value of A as x varies.	[3 marks

13
$$f(x) = 3x^2 + 6$$
 for all x

$$g(x) = \sqrt{x - 5} \qquad x \geqslant 5$$

13 (a)	Work out the value of	gf(4)
--------	-----------------------	-------

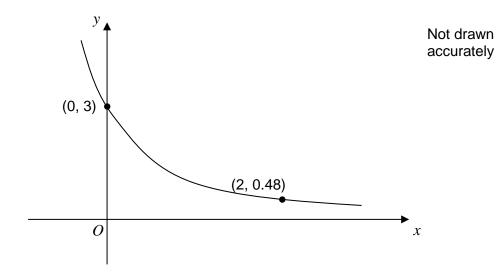
		[2 marks]


Answer		
--------	--	--

13 (b)	Show that	fg(x)	can be written in the form	a(x-a)	where a is an integer.
--------	-----------	-------	----------------------------	--------	--------------------------

[2 marks]	

Answer	


14 Use the sine rule to work out the size of obtuse angle x.

Not drawn accurately

	[3 marks]
Answer	degrees

Here is a sketch of the curve $y = ab^{-x}$ where a and b are positive constants. (0, 3) and (2, 0.48) lie on the curve.

Work out the values of a and b.

		[4 marks]

$$a =$$

16 Simplify
$$\frac{8x^3 - 50x}{2x(6x^2 - x - 35)}$$

Give your answer in the form $\frac{ax+b}{cx+d}$ where a, b, c and d are integers.

[5 marks]

By multiplying both sides of the equation by $x^{\frac{1}{2}}$ 17

Solve

$$2x^{\frac{3}{2}} - 3x^{\frac{1}{2}} = 7x^{-\frac{1}{2}}$$

for x > 0

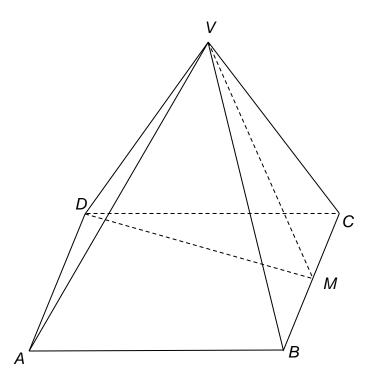
Give your answer to 3 significant figures.

You **must** show your working.

,	[4 marks]

18	How many odd num	bers gre	ater than	30 000 c	an be foi	rmed from these digits	
		2	4	6	7	8	
	with no repetition of	any digit	?				
		,					[3 marks]
		Ans	wer				_

19
$$f(x) = 3x^3 - 2x^2 - 7x - 2$$


(a)	Use the factor theorem to show that	(3x + 1) is a factor of $f(x)$.	[2 marks]
(b)	Factorise f(x) fully.		[3 marks
(b)	Factorise f(x) fully.		[3 marks
(b)	Factorise f(x) fully.		[3 marks
(b)	Factorise f(x) fully.		[3 marks

VABCD is a pyramid with a horizontal rectangular base ABCD.V is directly above the centre of the base.

VA = VB = VC = VD = 10 cm

$$AB = 8 \text{ cm}$$
 $BC = 6 \text{ cm}$

M is the midpoint of *BC*.

Work out the size of angle <i>VMD</i> .		[5 m
Answer		degrees
Allower		- -

[4 marks	is divisible by 9 for all integer values of n .	$(2n+3)^3+n^3$	Show that

END OF QUESTIONS

Copyright © 2019 AQA and its licensors. All rights reserved.