

AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/1)

Paper 1

Specimen 2020

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

mathematical instruments

You may not use a calculator

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

Centre number				Ca	and	lida	ate	nι	ımb	er						
Surname																
Forename(s)																
Candidate signa	ature															

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Answer all questions in the spaces provided.

1 (a)
$$\frac{y^6 \times y}{y^m} = y^6$$

Circle the value of m.

[1 mark]

1.5

2

3

1 **(b)** $a^n \times a^5 = a^5$

$$a^n \times a^5 = a^5$$

Work out the value of n.

[1 mark]

Answer

1 (c)
$$(c^5)^p = (c^2)^6$$

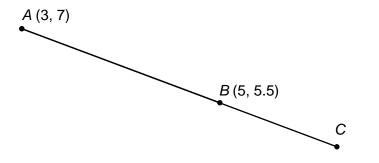
Work out the value of p.

[2 marks]

2	Solve	$\sqrt[3]{7x-13}=2$
2	Solve	$\sqrt[3]{1}x - 13 = 2$

[2 marks]

[4 marks]


3
$$3a(2x-1) + 4(ax+5) \equiv 60x+b$$

Work out the values of a and b.

$$a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}}$$

Not drawn accurately

4 ABC is a straight line with AB:BC=5:2

Work out the coordinates of C.

		[4 marks]

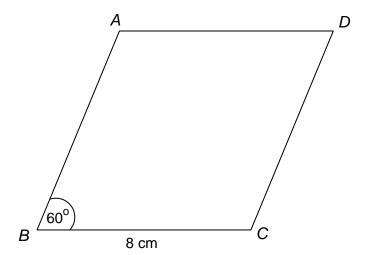
Answer _(, ____ , ____)_

$$y = 2x^{10} - \frac{3}{x^2}$$

Work out
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

[3 marks]

Answer _____


6 Simplify fully
$$\frac{15x^2y - 5xy^2}{12x - 4y}$$

[3 marks]

Answer ____

7 ABCD is a rhombus with side length 8 cm

Angle ABC = 60°

Not drawn accurately

[3 marks]

Work out the area of the rhombus.

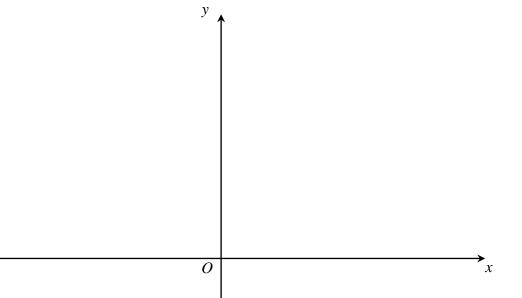
Give your answer in the form $a\sqrt{b} \ \mathrm{cm}^2$ where a and b are integers.

Answer _____ cm²

8 The curve $y = 2x^3 - 3x^2 - 12x + 6$

has a maximum point at L (-1, 13)

has a minimum point at M(2, -14)

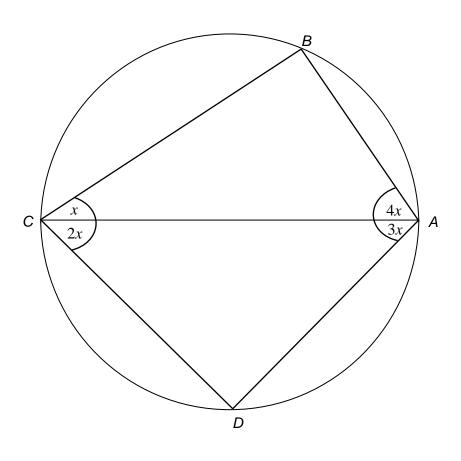

intersects the *y*-axis at *N*.

The curve crosses the *x*-axis at three distinct points.

On the axes below, sketch the curve.

Label the points L, M and N on your sketch.

[3 marks]


9 A, B, C and D are points on a circle.

$$\angle BCA = x$$

$$\angle ACD = 2x$$

$$\angle CAD = 3x$$

$$\angle CAB = 4x$$

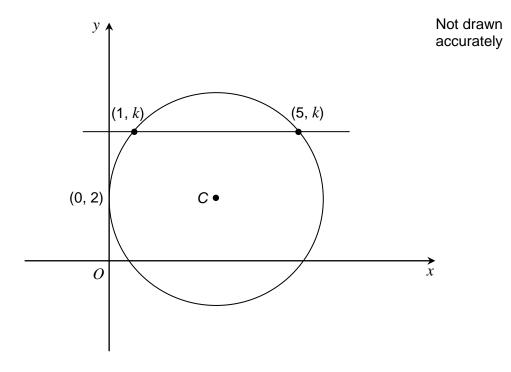
Not drawn accurately

Prove that AC is a diameter.

[4 marks]

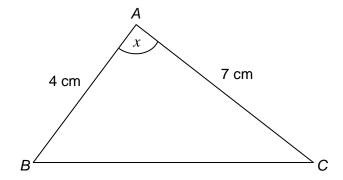
		- 1

[5 marks]


$$\mathbf{10} \qquad \qquad \mathsf{f}(x) = \left(\frac{9x}{2}\right)^{-1}$$

$$g(x) = \sqrt{1 - px^3}$$
 where p is a constant.

Given that
$$f\left(\frac{1}{3}\right) = g\left(\frac{1}{3}\right)$$
 work out the value of p .


A circle, centre *C*, touches the *y*-axis at the point (0, 2)

The line y = k intersects the circle at the points (1, k) and (5, k)

Work out the equation of the circle.	[3 marks]

12
$$AB = 4 \text{ cm}$$
 $AC = 7 \text{ cm}$ $\cos x = -\frac{2}{7}$

Work out the length of BC.

[3	marks]

Answer	cm

Rearrange
$$t = \frac{3w^3 + a}{w^3 - 2}$$
 to make w the subject.

[5 marks]

Answer _____

14 Rationalise and simplify $\frac{\sqrt{3}-7}{\sqrt{3}+1}$

Give your answer in the form $a + b\sqrt{3}$ where a and b are integers.

[4 marks]

Answer _____

- Point *A* lies on the curve $y = x^2 + 5x + 8$ The *x*-coordinate of *A* is -4
- **15 (a)** Show that the equation of the normal to the curve at A is 3y = x + 16

[5 marks]

-		

15 (b)	The normal at A also intersects the curve at B.					
	Work out the <i>x</i> -coordinate of <i>B</i> .					
		[4 marks]				
	Answer					

16	The coefficient of the x^4 term in the expansion of $(2x + a)^6$ is 60
	Work out the possible values of <i>a</i> .

[4 marks]

17 Solve the simultaneous equations

$$2a + b - c = 8$$

$$4a - 3b - 2c = -9$$

$$6a + 3b + c = 0$$

[5 marks]

18 Solve
$$x^{-\frac{2}{3}} = 12\frac{1}{4}$$

[3 marks]

19
$$f(x) = 2x^3 - 12x^2 + 25x - 11$$

Use differentiation to show that f(x) is an increasing function for all values of x.

	[4 marks
-	

20 (a)	Show that $2\cos^2\theta \equiv 2 - 2\sin^2\theta$		[1 mark]
20 (b)	Hence, solve $2\cos^2\theta + 3\sin\theta = 3$	for 0 < θ < 180°	[4 marks]
	Answer		

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright © 2019 AQA and its licensors. All rights reserved.