

Level 2 Certificate FURTHER MATHEMATICS 8365/1

Paper 1 Non-Calculator

Mark scheme

June 2021

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
sc	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Question	Answer	Mark	Comments
	$(5-3)^2 + (1-7)^2$ or $8^2 + (-6)^2$	M1	oe eg $8^2 + 6^2$ or $\sqrt{100}$
1	10	A1	
	Ado	ditional G	Guidance

Question	Answer	Mark	Commer	nts
	$2x^5 - 7x^4$	M1		
	10x ⁴ or (–) 28x ³	M1	oe eg 5 x 2x ⁵⁻¹	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}=\right) 10x^4 - 28x^3$		do not award for y =	
	(dx) with no additional terms	A1	or $\frac{d^2y}{dx^2}$ = on the answ	er line
2			SC2 $2x^4 - 7x^3 + 8x^4 - 21$	x^3
			SC1 $2x^4 - 7x^3 + x(8x^3 - 2x^3 + x(8x^3 + x) + x(8x^3 - 2x^3 + x(8x^3 + x) + x(8x^3 - 2x^3 + x(8x^3 + x) + $	(1 <i>x</i> ²)
	Ade	ditional G	Buidance	
	Allow $y = \dots$ for M marks but must be recovered for A1			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 10x^4 - 28x^3 + c$			M2A0

Question	Answer	Mark	Comments	
	В	B1		
3	Additional Guidance			

Q	Answer	Mark	Commer	nts
	6 < x < 8 or $x < 8$ and $x > 6$	B1	oe eg 8 > x > 6 word 'and' must be incluinequalities	ided if writing two
	Ado			
	[6, 8]	B1		
4(a)	Condone eg $x = 6 < x < 8$		B1	
	Incorrect inequality symbol eg $6 \le x$	В0		
	6 < f(x) < 8			В0
	B1 response with a list of integers on answer line			
	Only a list of integers			В0

Q	Answer	Mark	Commen	nts
4(b)	$-4 \leqslant g(x) < 5$ or $g(x) < 5$ and $g(x) \geqslant -4$	B2	oe eg $5 > g(x) \geqslant -4$ word 'and' must be inclu inequalities for B2 or B1 B1 $-4 < g(x) < 5$ or -4 or $-4 \leqslant g(x) \leqslant 5$ or $g(x) \leqslant 5$ and $g(x) >$ or $g(x) \leqslant 5$ where k or $k \leqslant g(x) < 5$ where k or $-4 \leqslant g(x) < m$ where than -4 SC1 $-4 \leqslant x < 5$ or $x < 5$ and $x \geqslant -4$ or only -4 and 5 seen (as a range in this case)	or SC1 $4 < g(x) \le 5$ -4 -4 -4 (3) is less than 5 (4) is less than 5 (4) is less than 5 (4) is less than 5
	Ade	ditional G	Guidance	
	Condone g(x) replaced by eg y or g of eg1 $-4 \le f(x) < 5$ eg2 $-4 \le y \le 5$	org <i>x</i> orfo	or fx or G or Gx or $x^2 - 4$	B2 B1
	[-4, 5)			B2
	(-4, 5) or (-4, 5] or [-4, 5]			B1
	Condone eg $g(x) = -4 \leqslant g(x) < 5$			B2
	Condone eg g(x) = $-4 < g(x) < 5$			B1
	B2 response with a list of integers on answer line			B1
	B1 response with a list of integers on	answer li	ne	B0
	Only a list of integers			В0

Question	Answer	Mark	Commer	nts
	Alternative method 1			
	x = 2h(x) - 3 or $x = 2y - 3$	M1	oe	
	2x - 3	A1		
	Alternative method 2			
4(c)	$x = \frac{3 + h^{-1}(x)}{2}$ or $x = \frac{3 + y}{2}$	M1	oe	
	2 <i>x</i> – 3	A1		
	Additional Guidance			
	Answer left as $y = 2x - 3$			M1A0

Question	Answer	Mark	Commer	its
	2n + 47 = 5(n + 1) or 2n + 47 = 5n + 5	M1	oe equation with fraction	eliminated
5(a)	14	A1		
	Ad	ditional G	Guidance	
	n = 14 from trial and error			M1A1

Question	Answer	Mark	Comments	Mark Con
	2	B1		B1
5(b)	Ade	Guidance	tional Guidance	
	Do not allow $n \rightarrow 2$			

Question	Answer	Mark	Con	nments
	40 and 140 with no other values	B2	B1 40 or 140	
6	Ado	uidance		
	sin 40 and sin 140 with no other incorrect answers 40 and 140 but with other values (incorrect or outside range) B1			

Question	Answer	Mark	Commer	nts
	$2x^2 - x - 3$ or $2x^2 - 3x + 2x - 3$	M1		
	4>-x-3	M1dep	oe eg $7 > -x$	
7	x > -7 or $-7 < x$	A1		
	Additional Guidance			
	= used instead of > throughout and not recovered on answer line M2A0			M2A0

Answer	Mark	Comments
Alternative method 1		
$\sqrt{225} + \sqrt{144}$		
or	M1	
15 + 12		
27	A1	
Alternative method 2		
$5\sqrt{3} + 4\sqrt{3}$ or $9\sqrt{3}$		
or		
9 x 3	M1	
or		
15 + 12		
27	A1	
Additional Guidance		
	Alternative method 1 $\sqrt{225} + \sqrt{144}$ or $15 + 12$ 27 Alternative method 2 $5\sqrt{3} + 4\sqrt{3} \text{ or } 9\sqrt{3}$ or 9×3 or $15 + 12$	Alternative method 1 $\sqrt{225} + \sqrt{144}$ or $15 + 12$ 27 Alternative method 2 $5\sqrt{3} + 4\sqrt{3} \text{ or } 9\sqrt{3}$ or 9×3 or $15 + 12$ Alternative Method 2 M1

Question	Answer	Mark	Comme	nts
	Expanding second and third bracket $3x^2 + 6x - 4x - 8$ with at least three terms correct or $3x^2 + 2x + k$ where k is a non-zero constant	M1	oe expansion attempt of brackets eg1 first and second br $6x^2 - 8x - 15x + 20$ with terms correct or $6x^2 - 23x + k$ where k constant eg2 first and third brack $2x^2 + 4x - 5x - 10$ with terms correct or $(2x^2 - x + k)$ where k constant	ackets n at least three is a non-zero cets at least three is a non-zero
9	$6x^{3} + 12x^{2} - 8x^{2} - 16x$ or $6x^{3} + 4x^{2} - 16x$ or $-15x^{2} - 30x + 20x + 40$ or $-15x^{2} - 10x + 40$	M1dep	attempt at a full expanse multiplication of their 3 of the terms in the remains on $6x^3 - 8x^2 - 15x^2$ or $6x^3 - 23x^2 + 20x$ or $12x^2 - 16x - 30x + 4$ or $12x^2 - 46x + 40$ eg2 $6x^3 + 12x^2 - 15x^2 - 6x^3 - 3x^2 - 30x$ or $-8x^2 - 16x + 20x + 6x^2 - 16x + 20x + 2$	or 4 terms by one aining bracket $x^{2} + 20x$ $x^{2} + 20x$ $x^{3} + 20x$
	$6x^3 - 11x^2 - 26x + 40$	A1	fully correct simplified expansion allow terms written in a different order	
	Ado	litional G	uidance	
	For the M marks terms may be seen i	n a grid		
	First M1 do not allow any omissions o	r extra ter	ms	
	eg1 $3x^2 + 6x - 8$			MO
	eg2 $3x^2 + 6x - 4x - 8 + x^2$			M0

Q	Answer	Mark	Comments	
	Alternative method 1			
	(Second differences =) -2 or $-n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence	
	01 14 09 (-316) or 1 5 9 (13) or -1-0-4-1-9-0 (-163) or -1 -5-9 (-13)	M1dep	subtracts $-n^2$ from the given terms or subtracts the given terms from $-n^2$	
	$-n^2 + 4n - 3$	A1	oe eg $4n - 3 - n^2$	
10	Alternative method 2			
	Any three of $a + b + c = 0$ 4a + 2b + c = 1 9a + 3b + c = 0 16a + 4b + c = -3	M1	using n th term = $an^2 + bn + c$	
	3a + b = 1 and $5a + b = -1$ or a = -1 and $b = 4$	M1dep	oe obtains two equations in the same two variables	
	$-n^2+4n-3$	A1	oe eg $4n - 3 - n^2$	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3				
	(Second differences =) -2 or $-n^2$	M1	second differences seen and not contradicted may be seen by the sequ		
10	3a + b = 1 and substitutes $a = -1$	M1dep	oe eg $-3 + b = 1$ or $b = 4$		
cont	$-n^2+4n-3$	A1	oe eg $4n - 3 - n^2$		
	Additional Guidance				
	Condone use of U _n		M2A1		
	Condone working in different variable(s) eg $-n^2 + 4x - 3$			M2A1	
	Answer $-n^2$ scores at least M1				
	Condone $-n^2 + 4n - 3 = 0$ or $n = -n^2 + 4n - 3$			M2A1	

Question	Answer	Mark	Comments		
	$\begin{bmatrix} 2a & 2b + 0.4 \\ 0 & 1.2 \end{bmatrix}$ or $2a = k$ or $k = 1.2$ or $2b + 0.4 = 0$	M1	oe any 3 terms correct in correct position could be implied from second M mark		
11	2a = k and $2b + 0.4 = 0$	M1dep	oe eg $2a = 1.2$ and $2b + 0.4 = 0$		
	a = 0.6 or $b = -0.2$	M1	oe		
	a = 0.6 and $b = -0.2$	A1	oe		
	Additional Guidance				

Question	Answer	Mark	Comments	
	$(x-4)^2 + (y+2)^2 = 20$	B2	B1 $(x-4)^2 + (y+2)^2$ or	20
	Ac	Iditional C	Guidance	
	$(x + 4)^2 + (y - 2)^2 = 20$			B1
	$(x-4)^2 + (y+2)^2 = 4^2 + (-2)^2$			B1
12(a)	$(x-4)^2 + (y+2)^2 = \sqrt{20}$			B1
	$(x-4)^2 - (y + 2)^2 = 20$			B1
	$(x-4)^2 + (y2)^2 = 20$			B2
	$(x-4)^2 + (y2)^2 = (\sqrt{20})^2$			B2
	ignore further working			

Question	Answer	Mark	Comme	ents	
	(Gradient $AC = $) $\frac{02}{8 - 4}$ or $\frac{2}{4}$	M1	oe		
12(b)	(Gradient of tangent =) negative reciprocal of their $\frac{2}{4}$ or -2	M1	oe ft their gradient AC only gradient –2 seen is M2		
	y = -2x + 16	A1	oe		
	Additional Guidance				
	It is possible to find an incorrect gradient of <i>AC</i> and then get the second M mark for finding the negative reciprocal of this			M0M1A0	

Question	Answer	Mark	Comments		
	$k^2 = \frac{49}{16}$ or $k = \sqrt{\frac{49}{16}}$	M1	oe		
13(a)	$\frac{7}{4}$	A1	oe		
	Additional Guidance				
	$-\frac{7}{4}$ or $\pm \frac{7}{4}$ will not gain the A mark u	ınless reco	overed	M1A0	

Question	Answer	Mark	Comments	
	4 7	B1ft	oe allow decimal rounded ft their (a) but not if $k = 0$	•
13(b)	Additional Guidance			
15(2)	$\frac{1}{\frac{4}{7}}$			В0

Q	Answer	Mark	Comments	
	Alternative method 1 Eliminates b from first two equations before eliminating a second variable			
	Correct attempt to eliminate <i>b</i> from LHS of first two equations	M1	eg $2(4a-b+3c)+3a+2b-c$ or $11a+5c$ adding or subtracting the two equations can be implied from two terms correct	
	Correct attempt to eliminate a or c from LHS of third equation and their equation in a and c	M1dep	eg $11a + 5c + 2a - 5c$ or $2(11a + 5c) - 11(2a - 5c)$	
	Correct equation in a or c	M1dep	eg 13 a = 52 or 65 c = 195 implied by a = 4 or c = 3 with M2	
	Two correct values with M3	A1	eg $a = 4$ and $c = 3$ with M3	
	a=4 and $b=-2$ and $c=3$ with M3	A1		
14	Alternative method 2 Eliminates	a or c befo	ore eliminating a second variable	
14	Two correct attempts to eliminate the same variable (a or c) from LHS	M1	eg (eliminating a) $4a - b + 3c - 2(2a - 5c)$ and $2(3a + 2b - c) - 3(2a - 5c)$ or $-b + 13c \text{ and } 4b + 13c$	
	Correct attempt to eliminate a second variable from LHS of their two equations	M1dep	eg - b + 13c - (4b + 13c)	
	Correct equation in one variable	M1dep	eg $-5b = 10$ implied by $b = -2$ with M2	
	Two correct values with M3	A1	eg $b=-2$ and $a=4$ with M3 or $b=-2$ and $c=3$ with M3	
	a=4 and $b=-2$ and $c=3$ with M3	A1		

Additional Guidance is on the next page

	Additional Guidance					
	For the first two marks ignore the RHS of the equations First two method marks may be seen in one attempt eg Alt1 $2(4a - b + 3c) + 3a + 2b - c + 2a - 5c$					
14 cont	Elimination may be seen from other approaches eg1 Alt 1 (equates expressions for $2b$ from first two equations) $2(4a+3c-27)=5-3a+c$ eg2 Alt 2 (rearranges third equation to $a=2.5c-3.5$ and substitutes into first two equations)	M1				
	4(2.5c - 3.5) - b + 3c and $3(2.5c - 3.5) + 2b - c$	M1				
	Correct values with no working	M0A0				

Question	Answer	Mark	Comments
	$\tan x = (\pm) \frac{1}{\sqrt{3}}$ or $\tan x = (\pm) \frac{\sqrt{3}}{3}$	M1	
15	30 with no incorrect solutions within the given range	A1	ignore correct solutions outside the given range.
	Additional Guidance		

Q	Answer	Mark	Commer	nts
	$200\left(-\frac{1}{2}\right)^{3} + 100\left(-\frac{1}{2}\right)^{2}$ $-18\left(-\frac{1}{2}\right) - 9$	M1	oe $\operatorname{eg} 200\left(-\frac{1}{8}\right) + 100\left(\frac{1}{4}\right)$	$-18\left(-\frac{1}{2}\right)-9$
16(a)	-25 + 25 + 9 - 9 = 0 with M1 seen	A1	must evaluate each term and equate to zero	
	Additional Guidance			
	Condone $\left(\frac{1}{2}\right)^2$ for $\left(-\frac{1}{2}\right)^2$			
	$200\left(-\frac{1}{2}\right)^{3} + 100\left(-\frac{1}{2}\right)^{2} - 18\left(-\frac{1}{2}\right) - 9 = 0$			M1A0

Question	Answer	Mark	Commen	ts
	$(100x^2 - 9)$	M1		
	$(10x - 3)(10x + 3)$ or $(x =)\sqrt{\frac{9}{100}}$	M1dep	oe eg $(x =)\sqrt{0.09}$	
16(b)	-0.5 and -0.3 and 0.3	A1	oe eg fractions	
	Additional Guidance		Guidance	
	-0.5 and -0.3 or -0.5 and 0.3 with the other solution missing implies $(100x^2-9)$			M1M0A0
	-0.3 and 0.3 on answer line implies $(10x - 3)(10x + 3)$			M2A0

Question	Answer	Mark	Comments	
	x-4 or $4-x$ seen in working	M1	from a subtraction of the quadra	tic and
	y = x - 4 drawn	A1		
17	5.3 and 1.7 and $y = x - 4$ drawn	A1	Allow [5.2, 5.4] and [1.6,1.8]	
	Ad	ditional	Guidance	
	Solutions with correct graph not seen e	g from fo	rmula	M0A0A0
	Solutions from quadratic graph drawn			M0A0A0

Question	Answer	Mark	Comments
	$7^2 = x^2 + 3^2 - 2 \times 3 \times x \cos 60^\circ$	M1	oe
	$x^2 - 3x - 40 (= 0)$	A1	
18	$(x-8)(x+5) (= 0)$ or $\frac{3 \pm \sqrt{(-3)^2 - 4 \times 1 \times -40}}{2 \times 1}$	M1	oe follow through their three term quadratic
	8	A1	
	Additional Guidance		
	If -5 is also given as an answer then o	do not aw	vard final A mark

Q	Answer	Mark	Commer	nts
Q 19	Cubic curve from $x = -2$ to $x = 6$ and maximum point at $(-1, a)$ where a is negative and minimum point at $(2, b)$ where b is less than a and increasing through $(5, 0)$	Mark B4	B3 curve from $x = -2$ to and maximum point at $(-1, c)$ where c is any value and minimum point at $(2, d)$ where d is less than c are and increasing through $(5, 0)$ or a B4 response apart from drawn from $x = -2$ to $x = -2$	x = 6) In ord d is negative or cubic curve note 6 or point at $(-1, e)$ or point at $(2, h)$ or $(5, 0)$ or and increasing
			rather than a curve.	
	Ade	ditional G	Guidance	
	-2 -1 0 1 2 3 4 5 6 x			B4

Question	Answer	Mark	Comments
	5 ×	M1	oe eg listing the 5 possible first digits
	5 × 5 × 4 × 3	M1dep	
20	300	A1	SC1 (6 × 5 × 4 × 3 =) 360
	Ad	ditional	Guidance

Q	Answer	Mark	Comments
	Alternative method 1 Works out	$\frac{1}{2}\times(6+2$	$2\sqrt{7}$)
	$\frac{1}{2} \times (6 + 2\sqrt{7}) \times AD$	M1	oe eg $(3 + \sqrt{7}) \times AD$ or $(3 + \sqrt{7}) \times AC \sin C$ may be implied
	$\frac{13 + 3\sqrt{7}}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}}$	M1	ft their $\frac{13+3\sqrt{7}}{3+\sqrt{7}}$ their denominator must have 2 terms
	(numerator =) $39 - 13\sqrt{7} + 9\sqrt{7} - 21$ or $18 - 4\sqrt{7}$	M1dep	ft their numerator which must have 2 terms oe dep on 2nd M1
	(denominator =) 2	M1dep	ft their denominator dep on 2nd M1
21	$9-2\sqrt{7}$	A1	
	Alternative method 2 Works out	2 × (13 +	3√7)
	$\frac{1}{2}\times(6+2\sqrt{7})\times AD$	M1	oe eg $(6 + 2\sqrt{7}) \times AD = (26 + 6\sqrt{7})$ may be implied
	$\frac{26 + 6\sqrt{7}}{6 + 2\sqrt{7}} \times \frac{6 - 2\sqrt{7}}{6 - 2\sqrt{7}}$	M1	ft their $\frac{26+6\sqrt{7}}{6+2\sqrt{7}}$ their denominator must have 2 term
	(numerator =) $156 - 52\sqrt{7} + 36\sqrt{7} - 84$ or $72 - 16\sqrt{7}$	M1dep	ft their numerator which must have 2 terms oe dep on 2nd M1
	(denominator =) 8	M1dep	ft their denominator dep on 2nd M1
	$9 - 2\sqrt{7}$	A1	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 3 Using identities			
	$(6 + 2\sqrt{7}) \times AD = (26 + 6\sqrt{7})$	M1	oe	
	$(6 + 2\sqrt{7}) \times (a + b\sqrt{7}) = (26 + 6\sqrt{7})$	M1	oe	
	6a + 14b = 26 and $2a + 6b = 6$	M1dep	oe eg $3a + 7b = 13$ and $a + 3b = 3$	
	$a=9 ext{ or } b=-2$ M1dep $9-2\sqrt{7}$ A1			
	Ad	ditional (Guidance	
	Alt1 $\frac{18-4\sqrt{7}}{2}$ M4			M4
21 cont				
	eg $\frac{13+3\sqrt{7}}{6+2\sqrt{7}} \times \frac{6-2\sqrt{7}}{6-2\sqrt{7}}$			MOM1
	$\frac{78-26\sqrt{7}+18\sqrt{7}-42}{8}$ M1M1 $4.5-\sqrt{7}$ A0 $(\text{If the }\frac{1}{2} \text{ is recovered then all 5 marks are possible})$ Missing brackets must be recovered			M1M1
				A0

Question	Answer	Mark	Comments		
	Alternative method 1 Working with p	owers o	f 2		
	2^{3x} or 2^{52}	B1	from 8^x and 4^{26}		
	$2^{52}(2^4 - 1)$ or $2^{52} \times 15$ or $2 \times 8^x = 2^{52}$ or $2 \times 2^{3x} = 2^{52}$	M1	oe		
	$2^{3x+1} = 2^{52}$ or $3x + 1 = 52$	M1dep	oe eg $2^{3x} = 2^{51}$		
	17	A1			
	Alternative method 2 Working with p	owers o	f 4		
	$4^{1.5x}$ or 4^{28}	B1	from 8 ^x and 2 ⁵⁶		
	$4^{26}(4^2-1)$ or $4^{26} \times 15$ or $2 \times 4^{1.5x} = 4^{26}$	M1	oe		
22	$4^{1.5x} = \frac{4^{26}}{4^{0.5}} \text{or} 1.5x = 26 - 0.5$	M1dep	oe eg $4^{1.5x} = 4^{25.5}$		
	17	A1			
	Alternative method 3 Working with powers of 8				
	$8^{\frac{56}{3}}$ or $8^{\frac{52}{3}}$	B1	from 2 ⁵⁶ and 4 ²⁶		
	$8^{\frac{52}{3}} (8^{\frac{4}{3}} - 1) \text{ or } 8^{\frac{52}{3}} \times 15$ or $2 \times 8^x = 8^{\frac{52}{3}}$	M1	oe		
	$8^x = 8^{\frac{52}{3}} \div 8^{\frac{1}{3}}$ or $x = \frac{52}{3} - \frac{1}{3}$	M1dep	oe eg $8^x = 8^{17}$		
	17	A1			
	Ad	ditional	Guidance		

Question	Answer	Mark	Comment	s
	Angles in the same segment	B1	oe eg angles at the circun	nference are
	Alternate angles B1 0		do not accept alternative	or alternating
	Additional Guidance			
23(a)	Angles on the circumference from a chord Angles in the same sector, opposite angles, parallel lines, angles from a chord, similar triangles, isosceles triangle, corresponding angles, triangles on a chord, intersecting chords, allied angles, alternate segment theorem		B1	
			В0	

Question	Answer	Mark	Comments
	$\angle HJF = 3y$ or $\angle JFG = 2x$ or $\angle HFL = 2x$	M1	may be on the diagram implied by one correct equation in \boldsymbol{x} and \boldsymbol{y}
23(b)	2x + 3y + 98 = 180 and 4x + 7y = 180	M1dep	two correct equations in x and y
	A correct attempt to eliminate one of the variables from the two equations	M1dep	eg $(4x + 7y) - 2(2x + 3y)$
	x = 17 and $y = 16$	A1	
	Additional Guidance		