Standard Form Questions with Indices

1.	
(a) $x = 9 \times 10^{2m}$ where <i>m</i> is an integer.	
Find, in standard form, an expression for \sqrt{x}	
	(2)
(b) $y = 9 \times 10^{2n}$ where <i>n</i> is an integer.	
Find, in standard form, an expression for $y^{\frac{3}{2}}$	
Give your answer as simply as possible.	
	(2)
	(3)

(Total for Question 18 is 5 marks)

$y = 16 \times 10^{8k}$ where k is an integer.	
Find an expression, in terms of k , for $y^{\frac{5}{4}}$. Give your answer in standard form.	
	(Total for Question 25 is 3 marks)
3.	(10mm for Question 20 150 mm fis)
$m = 8 \times 10^{9n}$ where <i>n</i> is an integer.	
Express m^{-3} in standard form.	
Express $m^{-\frac{1}{3}}$ in standard form. Give your answer, in terms of n , as simply as possible.	
Express m^{-3} in standard form. Give your answer, in terms of n , as simply as possible.	
Express m^{-3} in standard form. Give your answer, in terms of n , as simply as possible.	
Express m^{-3} in standard form. Give your answer, in terms of n , as simply as possible.	
Express m^{-3} in standard form. Give your answer, in terms of n , as simply as possible.	
Express <i>m</i> ³ in standard form. Give your answer, in terms of <i>n</i> , as simply as possible.	
Express <i>m</i> ³ in standard form. Give your answer, in terms of <i>n</i> , as simply as possible.	
Express <i>m</i> ³ in standard form. Give your answer, in terms of <i>n</i> , as simply as possible.	
Express m^{-3} in standard form. Give your answer, in terms of n , as simply as possible.	
Express <i>m</i> ³ in standard form. Give your answer, in terms of <i>n</i> , as simply as possible.	
Express <i>m</i> ³ in standard form. Give your answer, in terms of <i>n</i> , as simply as possible.	

2.

Answers

1.

18	(a)		3 × 10 ^m	2	B2	B1 for $3 \times \sqrt{10^{2m}}$ or 3×10^{km} where $k \neq 1$ or $a \times 10^m$ where $a \neq 3$
	(b)	$\left((9)^{\frac{3}{2}} = \right)27$ or 2.7		3	B1	
		27×10^{3n} oe			M1	
			$2.7 \times 10^{3n+1}$		A1	
						Total 5 marks

2.

25	32 or 3.2 or 10 ^{10k}		3	M1
	32×10^{10k}			M1
	$3.2 \times 10^{10k+1}$	$3.2 \times 10^{10k+1}$		Al
				Total 3 marks

3.

22 $ e.g. \left(\frac{1}{8 \times 10^{9n}}\right)^{\frac{1}{3}} \text{ or } \left(2 \times 10^{3n}\right)^{-1} \text{ or } \frac{1}{\sqrt[3]{8 \times 10^{9n}}} \text{ or } \left(\sqrt[3]{8 \times 10^{9n}}\right)^{-1} \text{ or } \left(8^{-\frac{1}{3}} \times 10^{-\frac{9n}{3}}\right) \text{ or } \left[\frac{1}{8^{\frac{1}{3}}} and \frac{1}{\left(10^{9n}\right)^{\frac{1}{3}}}\right] \text{ or } \left[2^{-1}and(10^{3n})^{-1}\right] \text{ oe } $ $ e.g. \frac{1}{2 \times 10^{3n}} \text{ or } 0.5 \times 10^{-3n} \text{ oe or } \left[8^{-\frac{1}{3}} = 0.5 \text{ and } \left(10^{9n}\right)^{-\frac{1}{3}} = 10^{-3n}\right] \text{ oe } $ $ M1 \text{ For dealing with } 8^{-\frac{1}{3}} \text{ (shown as } \frac{1}{2} \text{ or } 0.5 \text{ and } \left(10^{9n}\right)^{-\frac{1}{3}} \text{ shown as } 10^{-3n} \text{ of } 10^{-$	•					
	22	$ \ \ e.g. \bigg(\frac{1}{8 \! \times \! 10^{9n}} \bigg)^{\! \frac{1}{3}} \ \text{or} \ \big(2 \! \times \! 10^{3n} \big)^{\! -1} \ \text{or} \ \frac{1}{\sqrt[3]{8 \! \times \! 10^{9n}}} \ \text{or} \\$			M1	Correct first stage.
		$\left(\sqrt[3]{8 \times 10^{9n}}\right)^{-1}$ or $\left(8^{\frac{-1}{3}} \times 10^{\frac{-9n}{3}}\right)$ or				
e.g. $\frac{1}{2 \times 10^{3n}}$ or 0.5×10^{-3n} oe or $\left[8^{\frac{-1}{3}} = 0.5 \text{ and } (10^{9n})^{\frac{-1}{3}} = 10^{-3n}\right]$ oe		$\left[\frac{1}{2^{\frac{1}{3}}} and \frac{1}{\left(10^{9n}\right)^{\frac{1}{3}}} \right] $ or $\left[2^{-1} and (10^{3n})^{-1} \right]$ oe				
$\left[8^{\frac{-1}{3}} = 0.5 \text{ and } (10^{9n})^{\frac{-1}{3}} = 10^{-3n}\right] \text{ oe}$		e.g. $\frac{1}{2 \times 10^{3n}}$ or 0.5×10^{-3n} oe or			M1	
		$\left[8^{\frac{-1}{3}} = 0.5 \text{ and } (10^{9n})^{\frac{-1}{3}} = 10^{-3n} \right] \text{ oe}$				
$5 \times 10^{-3n-1}$ 3 A1 $5 \times 10^{-(3n+1)}$			$5 \times 10^{-3n-1}$	3	A1	$5 \times 10^{-(3n+1)}$
Total 3 marks						Total 3 marks