3A Arithmetic Sequences Introduction

1. An arithmetic sequence is generated as follows:
$6,20,34,48,72 \ldots$
a) Find the nth term
b) Find the first term in the sequence that exceeds 200
2. An arithmetic sequence is generated as follows:

101, 94, 87, 80, 73...
a) Find the nth term
b) Find the first term in the sequence that is negative
3. A sequence is generated by the formula $u_{n}=a+(n-1) d$, where a and b are constants to be found.

Given that $u_{3}=5$ and $u_{8}=20$, find the values of the constants a and d.

3B Arithmetic Series

Proof:

1. Find the sum of the first 50 terms of the arithmetic series:
$32+27+22+17+12+\ldots$
2. Find the smallest number of terms required for the sum of $4+9+14+19+\ldots$ to exceed 2000.

3C Geometric Sequences Introduction

1. Find the nth and $10^{\text {th }}$ terms of the following sequences...
a) $3,6,12,24 \ldots$
b) $40,-20,10,-5 \ldots$
2. The second term of a Geometric sequence is 4 , and the $4^{\text {th }}$ term is 8 . Find the values of the common ratio and the first term
3. The numbers $3, x$, and $(x+6)$ form the first three terms of a positive geometric sequence. Calculate the $15^{\text {th }}$ term of the sequence
4. What is the first term to exceed 1 million in the sequence:
$3,6,12,24 \ldots$

3D Geometric Series

Proof:

1. Find the sum of the following Geometric Series:
$2+6+18+54 \ldots$ (for 10 terms)
2. Find the sum of the following Geometric Series:
$1024-512+256-128+\ldots \ldots+1$
3. Find the least value of n such that the sum of the following series exceeds $2,000,000$:

$$
1+2+4+8 \ldots
$$

3E Geometric Sum to Infinity

1. For the following series:

$$
16+8+4+2 \ldots
$$

a) Find the sum of the first 10 terms
b) Find the sum to infinity
2. The fourth term of a geometric series is 1.08 and the seventh is 0.23328 .
a) Show that the series is convergent
b) Calculate the sum to infinity of the series
3. For a geometric series with first term a, and common ratio $r, S_{4}=15$ and $S_{\infty}=16$.
a) Find the possible values of r
b) Given that all terms in the series are positive, find the value of a

1. Calculate the following:

$$
\sum_{r=1}^{20}(4 r+1)
$$

2. Find the value of:

$$
\sum_{r=1}^{12}\left(5 \times 3^{r-1}\right)
$$

3. Find the value of:

$$
\sum_{r=6}^{15}\left(5 \times 3^{r-1}\right)
$$

3G Recurrence Relationships

1. Find the first four terms of the following sequences:
a) $u_{n+1}=u_{n}+4, u_{1}=7$
b) $u_{n+1}=u_{n}+4, u_{1}=5$
2. Find the first five terms generated by the following sequence:
$u_{n+1}=2 u_{n}+3, u_{1}=2$
3. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by:

$$
a_{1}=p
$$

$a_{n+1}=\left(a_{n}\right)^{2}-1, n \geq 1$
where $p<0$
a) Show that $a_{3}=p^{4}-2 p^{2}$
b) Given that $a_{2}=0$, find the value of p
c) Find:

$$
\sum_{r=1}^{200} a_{r}
$$

d) Find the value of a_{199}

3H Nature of Sequences

1. For the following relationship, state whether the sequence is increasing, decreasing, or periodic:
a) $u_{n+1}=u_{n}+3, u_{1}=7$
b) $u_{n+1}=\left(u_{n}\right)^{2}, u_{1}=\frac{1}{2}$
c) $u_{n}=\sin (90 n)$

31 Sequences \& Series in Context

1. Bruce starts a new company. He estimates that in Year 1 his profits will be $£ 20000$, and he predicts that his profits will increase by $£ 5000$ per year from that point on. He then models that once his annual profits reach $£ 100000$, they will then remain constant.
a) Calculate the profit for Bruce's business in the first 20 years
b) State a reason why this model might not be suitable

Bruce's financial advisor says that it is more likely that his profits would increase by 5\% per year.
c) Using this model instead, calculate the profits that Bruce will make in the first 20 years.
2. A piece of A4 paper is folded in half repeatedly. The thickness of the sheet is 0.5 mm .
a) Work out the thickness after 4 folds
b) Work out the thickness after 20 folds
c) State one reason why this might be an unrealistic model

