11A Standard Integrals

1. Find the value of $\int_{-3}^{-2}\left(\frac{1}{x}\right) d x$
2. Find the following integral:

$$
\int\left(2 \cos x+\frac{3}{x}-\sqrt{x}\right) d x
$$

3. Find the following integral:

$$
\int\left(\frac{\cos x}{\sin ^{2} x}-2 e^{x}\right) d x
$$

4. Given that a is a positive constant and:

$$
\int_{a}^{3 a}\left(\frac{2 x+1}{x}\right) d x=\ln 12
$$

Find the exact value of a.

11B Basic Reverse Chain Rule

1. Find the following integral:

$$
\int \cos (2 x+3) d x
$$

2. Find the following integral:

$$
\int\left(e^{4 x+1}\right) d x
$$

3. Find the following integral:

$$
\int\left(\sec ^{2} 3 x\right) d x
$$

4. Find:

$$
\int\left(\frac{1}{3 x+2}\right) d x
$$

5. Find:

$$
\int(2 x+3)^{4} d x
$$

11D Spotting Derivatives

1. Find:

$$
\int\left(\frac{2 x}{x^{2}+1}\right) d x
$$

2. Find:

$$
\int\left(\frac{\cos x}{3+2 \sin x}\right) d x
$$

3. Find:
$\int(3 \sin (x) \cos (x)) d x$
4. Find:

$$
\int\left(3 \cos ^{2}(x) \sin (x)\right) d x
$$

5. Find:

$$
\int x\left(x^{2}+5\right)^{3} d x
$$

6. Find:

$$
\int 5 \tan (x) \sec ^{4}(x) d x
$$

7. Find $\int \frac{\sin 2 x}{(3+\cos 2 x)^{3}} d x$ (1f from textbook exercise)

11C Using Trigonometric Identities

1. Find the following integral:

$$
\int\left(\tan ^{2} x\right) d x
$$

2. Find:

$$
\int(\sin 3 x \cos 3 x) d x
$$

3. Find:

$$
\int(\sec x+\tan x)^{2} d x
$$

4. Show that:

$$
\int_{\frac{\pi}{12}}^{\frac{\pi}{8}}\left(\sin ^{2} x\right) d x=\frac{\pi}{48}+\frac{1-\sqrt{2}}{8}
$$

11G Integration by Partial Fractions

1. Find:

$$
\int \frac{x-5}{(x+1)(x-2)} d x
$$

2. Find:

$$
\int \frac{9 x^{2}-3 x+2}{9 x^{2}-4} d x
$$

11F Integration by Parts

1. Find:

$$
\int(x \cos x) d x
$$

2. Find:

$$
\int\left(x^{2} \ln x\right) d x
$$

3. Find:

$$
\int\left(x^{2} e^{x}\right) d x
$$

4. Evaluate:

$$
\int_{1}^{2} \ln x d x
$$

11E Integration by Substitution

1. Find $\int(x \sqrt{2 x+5}) d x$ using the following substitution:

$$
u=2 x+5
$$

2. Find $\int(x \sqrt{2 x+5}) d x$ using the following substitution:

$$
u^{2}=2 x+5
$$

3. Use the substitution $u=\sin x+1$ to find:

$$
\int \cos x \sin x(1+\sin x)^{3} d x
$$

4. Prove that:

$$
\int\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x=\arcsin x+c
$$

5. Use integration by substitution to evaluate:

$$
\int_{0}^{2} x(x+1)^{3} d x
$$

6. Use integration by substitution to evaluate:

$$
\int_{0}^{\frac{\pi}{2}} \cos x \sqrt{1+\sin x} d x
$$

11H part 2 Integrating Parametric Equations

Note that this was initially left out of the textbook, so depending on your edition, you may not have practise questions. I will be using the old C4 notes and examples to talk through the theory.

1. The cure has parametric equations

$$
x=t(1+t) \quad y=\frac{t}{1+t}
$$

Find the exact area of the region R, bounded by the curve C, the x-axis and the lines $x=0$ and $\mathrm{x}=2$

2. A curve has Parametric equations:

$$
x=5 t^{2} \quad y=t^{3}
$$

Work out

$$
\int_{5}^{20} y d x
$$

3. The diagram shows a sketch of the curve with Parametric equations:

The curve meets the x-axis at $x=0$ and $x=9$. The shaded region is bounded by the curve and the x-axis.

$$
x=t^{2} \quad y=2 t(3-t) \quad t \geq 0
$$

a) Find the value of t when:
i) $x=0$
ii) $x=9$
b) Find the Area of R
4. The diagram shows a sketch of the curve with Parametric equations:

$$
x=2 t^{2} \quad y=t\left(4-t^{2}\right)
$$

Calculate the finite area inside the loop...

11H Part 1 Integrating to Find Areas

1. The diagram shows part of the curve:

$$
y=\frac{9}{\sqrt{4+3 x}}
$$

The region R is bounded by the curve, the x-axis, and the lines $\quad x=0$ and $x=4$, and shown. Use integration to find the area of R.

2. The diagram shows part of the curves $y=f(x)$ and $y=g(x)$, where:

$$
\begin{gathered}
f(x)=\sin 2 x \\
g(x)=\sin x \cos ^{2} x \\
0 \leq x \leq \frac{\pi}{2}
\end{gathered}
$$

The region R is bounded by the two curves. Use integration to find the area of R.

11 The Trapezium Rule

1. Using 4 strips, estimate the area under the curve:

$$
y=\sqrt{2 x+3}
$$

Between the lines $x=0$ and $x=2$
2. Using 8 strips, estimate the area under the curve:

$$
y=\sqrt{2 x+3}
$$

Between the lines $x=0$ and $x=2$
3. Complete the table of values and use it to find an estimate for:
$\int_{0}^{\frac{\pi}{3}} \sec x d x$

x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
y					

4. Use the trapezium rule with 4 strips to find an approximation for:

$$
\int_{0}^{2} x \sin x d x
$$

11L Integration as the Limit of a Sum

1. The diagram shows a sketch of the curve with equation $y=\sin x$.

The area under the curve between $x=1$ and $x=2$ can be thought of as a thin series of strips of height y and width δx.
Calculate $\lim _{\delta x \rightarrow 0} \sum_{x=1}^{2} \sin x \quad \delta x$, giving your answer correct to 4 significant figures.

11J Separating the Variables

1. Find a general solution to the differential equation:

$$
\left(1+x^{2}\right) \frac{d y}{d x}=x \tan y
$$

2. Find the particular solution of the differential equation:

$$
\frac{d y}{d x}=\frac{-3(y-2)}{(2 x+1)(x+2)}
$$

given that $x=1$ when $y=4$

11K Modelling with Integration

1. The rate of increase of a population P of micro organisms at time t, in hours, is given by:

$$
\frac{d P}{d t}=3 P, \quad t>0
$$

Initially, the population was of size 8.
a) Find a model for P in the form $P=A e^{3 t}$, stating the value of A
b) Find, to the nearest hundred, the size of the population at the time $t=2$
c) Find the time at which the population will be 1000 times its starting value.
d) State one limitation of this model for large values of t
2. Water in a manufacturing plant is held in a large cylindrical tank of diameter 20 m . Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume (of the water).
a) Show that after t minutes after the tap is opened, $\frac{d h}{d t}=-k \sqrt[3]{h}$ for some constant k.
b) Show that the general solution to this differential equation may be written as $h=(P-Q t)^{\frac{3}{2}}$, where P and Q are constants

Initially, the height of the water is 27 m .10 minutes later, the height is 8 m .
c) Find the values of the constants P and Q
d) Find the time in minutes when the water is at a depth of 1 m

