QQQ - Statistics Yr2 - Chapter 2 - Conditional Probability Total Marks: 29
 (29 = Platinum, 27= Gold, 24 = Silver, 21 = Bronze)

1.

A mechanic carried out a survey on the defects of cars he was servicing. He found that the probability of a car needing a new tyre is 0.33 and that a car needing a new tyre has a probability of 0.7 of needing tracking. A car not needing a new tyre has a probability of 0.04 of needing tracking.
(a) Draw a tree diagram to represent this information.
(b) Find the probability that a randomly chosen car has exactly one of the two defects, needing a new tyre or needing tracking.

The mechanic also finds that cars need new brake pads with probability 0.35 and that this is independent of needing new tyres or tracking. A car is chosen at random.
(c) Find the probability that the car has at least one of these three defects.
(d) What advice would you give to motorists?
2.

$$
\mathrm{P}(E)=0.25, \mathrm{P}(F)=0.4 \text { and } \mathrm{P}(E \cap F)=0.12
$$

(a) Find $\mathrm{P}\left(E^{\prime} \mid F^{\prime}\right)$
(b) Explain, showing your working, whether or not E and F are statistically independent. Give reasons for your answer.

The event G has $\mathrm{P}(G)=0.15$.

The events E and G are mutually exclusive and the events F and G are independent.
(c) Draw a Venn diagram to illustrate the events E, F and G, giving the probabilities for each region.
(d) Find $\mathrm{P}\left([F \cup G]^{\prime}\right)$

3.

The table below shows the number of gold, silver and bronze medals won by two teams in an athletics competition.

	Gold	Silver	Bronze
Team \boldsymbol{A}	29	17	18
Team \boldsymbol{C}	21	23	17

The events G, S and B are that a medal is gold, silver or bronze respectively. Let A be the event that team A won a medal and C team C won a medal. A medal winner is selected at random. Find
(a) $\mathrm{P}(G)$,
(b) $\mathrm{P}\left([A \cap S]^{\prime}\right)$.
(c) Explain, showing your working, whether or not events S and A are statistically independent. Give reasons for your answer.
(d) Determine whether or not events B and C are mutually exclusive. Give a reason for your answer.
(e) Given that 30% of the gold medal winners are female, 60% of the silver medal winners are female and 40% of the bronze medal winners are female, find the probability that a randomly selected medal winner is female.

