QQQ - Statistics Yr2 - Chapter 2 - Conditional Probability Total Marks: 29
 (29 = Platinum, 27= Gold, 24 = Silver, 21 = Bronze)

1.

A mechanic carried out a survey on the defects of cars he was servicing. He found that the probability of a car needing a new tyre is 0.33 and that a car needing a new tyre has a probability of 0.7 of needing tracking. A car not needing a new tyre has a probability of 0.04 of needing tracking.
(a) Draw a tree diagram to represent this information.
(b) Find the probability that a randomly chosen car has exactly one of the two defects, needing a new tyre or needing tracking.

The mechanic also finds that cars need new brake pads with probability 0.35 and that this is independent of needing new tyres or tracking. A car is chosen at random.
(c) Find the probability that the car has at least one of these three defects.
(d) What advice would you give to motorists?
2.

$$
\mathrm{P}(E)=0.25, \mathrm{P}(F)=0.4 \text { and } \mathrm{P}(E \cap F)=0.12
$$

(a) Find $\mathrm{P}\left(E^{\prime} \mid F^{\prime}\right)$
(b) Explain, showing your working, whether or not E and F are statistically independent. Give reasons for your answer.

The event G has $\mathrm{P}(G)=0.15$.
The events E and G are mutually exclusive and the events F and G are independent.
(c) Draw a Venn diagram to illustrate the events E, F and G, giving the probabilities for each region.
(d) Find $\mathrm{P}\left([F \cup G]^{\prime}\right)$

3.

The table below shows the number of gold, silver and bronze medals won by two teams in an athletics competition.

	Gold	Silver	Bronze
Team \boldsymbol{A}	29	17	18
Team \boldsymbol{C}	21	23	17

The events G, S and B are that a medal is gold, silver or bronze respectively. Let A be the event that team A won a medal and C team C won a medal. A medal winner is selected at random. Find
(a) $\mathrm{P}(G)$,
(b) $\mathrm{P}\left([A \cap S]^{\prime}\right)$.
(c) Explain, showing your working, whether or not events S and A are statistically independent. Give reasons for your answer.
(d) Determine whether or not events B and C are mutually exclusive. Give a reason for your answer.
(e) Given that 30% of the gold medal winners are female, 60% of the silver medal winners are female and 40% of the bronze medal winners are female, find the probability that a randomly selected medal winner is female.

Solutions		B1		
2a	 Let $N \sim$ new tyre and $T \sim$ tracking $\begin{aligned} & \mathrm{P}(N)=0.33 \text { and } \mathrm{P}(T)=0.67 \\ & 0.7,0.3,0.04 \text { and } 0.96 \end{aligned}$		$1.1 \mathrm{~b}$	3rd Draw and use tree diagrams with three branches and/or three levels.
		(3)		
2b	$\mathrm{P}($ exactly one defect $)=0.33 \times 0.3+0.67 \times 0.04$	M1	3.1 b	5th Understand the language and notation of conditional probability.
	$=0.1258$	A1	1.1b	
	$1-\mathrm{P}($ no defects $)=1-0.67 \times 0.96 \times 0.65$	$\begin{aligned} & \text { (2) } \\ & \text { M1 } \end{aligned}$	3.1b	5th Understand the language and notation of conditional probability.
2 c	$=0.5819 \ldots$ awrt 0.582 (3 d.p.)	A1	1.16	
		(2)		
2d	To have their cars checked regularly as there is over a 50% chance they need new tyres, tracking or brake pads.	B1	3.2a	5th Understand the language and notation of conditional probability.
		(1)		

5a	$\mathrm{P}\left(E^{\prime} \mid F\right)=\frac{\mathrm{P}\left(E^{\prime} \cap F^{\prime}\right)}{\mathrm{P}\left(F^{\prime}\right)} \text { or } \frac{0.47}{0.6}$	M1	3.1a	4th Calculate probabilities using set notation.
	$=\frac{47}{60} \text { or } 0.783 \text { (3 s.f.) }$	A1	1.1b	
		(2)		
5b	$\mathrm{P}(E) \times \mathrm{P}(F)=0.25 \times 0.4=0.1 \neq \mathrm{P}(E \cap F)=0.12$	M1	2.1	4th Understand and use the definition of independence in probability calculations.
	So, E and F are not statistically independent.	A1	2.4	
		(2)		3rd Understand and use Venn diagrams for multiple events.
5c	Use of independence and all values in G correct. All values correct.	B1 M1A1 M1A1	2.5 3.1a 1.1b 1.1b 1.1b	
		(5)		
5d	$\mathrm{P}\left([F \cup G]^{\prime}\right)=0.13+0.38$	M1	3.1a	4th Calculate probabilities using set notation.
	$=0.51$	A1	1.1b	
		(2)		

3a	$\frac{29+21}{29+21+17+23+18+17}=\frac{50}{125}$	M1	1.1b	2nd Calculate probabilities from relative frequency tables and real data.
	$=0.4$	A1	1.1b	
		(2)		
3b	$\frac{125-17}{125}=\frac{108}{125}$	M1	3.1a	4th Understand set notation.
	$=0.864$	A1	1.1b	
		(2)		
3 c	$\mathrm{P}(S \cap A)=\frac{17}{125}=0.136 \neq \mathrm{P}(S) \times \mathrm{P}(A)=\frac{40}{125} \times \frac{64}{125}=0.163 \ldots$	M1	2.1	4th Understand and use the definition of independence in probability calculations.
	So, S and A are not statistically independent.	A1	2.4	
		(2)		3rd Understand and use the definition of mutually exclusive in probability calculations.
3d	B and C are not mutally exclusive	B1	2.2a	
	Being in team C does not exclude the possibility of winning a bronze medal	B1	2.4	
		(2)		
3e	$\frac{15+24+14}{125}=\frac{53}{125}$	M1	3.1b	5th Calculate conditional probabilities using formulae.
	$=0.424$	A1	1.1b	
		(2)		

