QQQ - Statistics Yr2 - Chapter 1 - More complex numbers
 Total Marks: 24

(24 = Platinum, 22 = Gold, 19 = Silver, 17 = Bronze)

1. A complex number z has modulus 1 and argument θ.
(a) Show that

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, \quad n \in \mathbb{Z}^{+} \tag{2}
\end{equation*}
$$

(b) Hence, show that

$$
\begin{equation*}
\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3) \tag{5}
\end{equation*}
$$

2. In an Argand diagram, the points A, B and C are the vertices of an equilateral triangle with its centre at the origin. The point A represents the complex number $6+2 \mathrm{i}$.
(a) Find the complex numbers represented by the points B and C, giving your answers in the form $x+\mathrm{i} y$, where x and y are real and exact.

The points D, E and F are the midpoints of the sides of triangle $A B C$.
(b) Find the exact area of triangle $D E F$.
3. The infinite series C and S are defined by

$$
\begin{aligned}
& \mathrm{C}=\cos \theta+\frac{1}{2} \cos 5 \theta+\frac{1}{4} \cos 9 \theta+\frac{1}{8} \cos 13 \theta+\ldots \\
& \mathrm{S}=\sin \theta+\frac{1}{2} \sin 5 \theta+\frac{1}{4} \sin 9 \theta+\frac{1}{8} \sin 13 \theta+\ldots
\end{aligned}
$$

Given that the series C and S are both convergent,
(a) show that

$$
\begin{equation*}
\mathrm{C}+\mathrm{i} \mathrm{~S}=\frac{2 \mathrm{e}^{\mathrm{i} \theta}}{2-\mathrm{e}^{4 \mathrm{i} \theta}} \tag{4}
\end{equation*}
$$

(b) Hence show that

$$
\begin{equation*}
\mathrm{S}=\frac{4 \sin \theta+2 \sin 3 \theta}{5-4 \cos 4 \theta} \tag{4}
\end{equation*}
$$

