QQQ - Statistics Yr2 - Chapter 1 - More complex numbers
 Total Marks: 24

(24 = Platinum, $22=$ Gold, $19=$ Silver, $17=$ Bronze $)$

1. A complex number z has modulus 1 and argument θ.
(a) Show that

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, \quad n \in \mathbb{Z}^{+} \tag{2}
\end{equation*}
$$

(b) Hence, show that

$$
\begin{equation*}
\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3) \tag{5}
\end{equation*}
$$

2. In an Argand diagram, the points A, B and C are the vertices of an equilateral triangle with its centre at the origin. The point A represents the complex number $6+2 \mathrm{i}$.
(a) Find the complex numbers represented by the points B and C, giving your answers in the form $x+\mathrm{i} y$, where x and y are real and exact.

The points D, E and F are the midpoints of the sides of triangle $A B C$.
(b) Find the exact area of triangle $D E F$.
3. The infinite series C and S are defined by

$$
\begin{aligned}
& \mathrm{C}=\cos \theta+\frac{1}{2} \cos 5 \theta+\frac{1}{4} \cos 9 \theta+\frac{1}{8} \cos 13 \theta+\ldots \\
& \mathrm{S}=\sin \theta+\frac{1}{2} \sin 5 \theta+\frac{1}{4} \sin 9 \theta+\frac{1}{8} \sin 13 \theta+\ldots
\end{aligned}
$$

Given that the series C and S are both convergent,
(a) show that

$$
\begin{equation*}
\mathrm{C}+\mathrm{iS}=\frac{2 \mathrm{e}^{\mathrm{i} \theta}}{2-\mathrm{e}^{4 i \theta}} \tag{4}
\end{equation*}
$$

(b) Hence show that

$$
\begin{equation*}
\mathrm{S}=\frac{4 \sin \theta+2 \sin 3 \theta}{5-4 \cos 4 \theta} \tag{4}
\end{equation*}
$$

Solutions

(a) | $z^{n}+z^{-n}=\cos n \theta+\mathrm{i} \sin n \theta+\cos n \theta-\mathrm{i} \sin n \theta$ | M 1 | 2.1 | |
| :--- | :--- | :---: | :---: |
| | $=2 \cos n \theta^{*}$ | $\mathrm{~A} 1^{*}$ | 1.1 b |
| b) | $\left(z+z^{-1}\right)^{4}=16 \cos ^{4} \theta$ | $\mathbf{(2)}$ | |
| | $\left(z+z^{-1}\right)^{4}=z^{4}+4 z^{2}+6+4 z^{-2}+z^{-4}$ | B 1 | 2.1 |
| $=z^{4}+z^{-4}+4\left(z^{2}+z^{-2}\right)+6$ | | | |
| $=2 \cos 4 \theta+4(2 \cos 2 \theta)+6$ | M 1 | 2.1 | |
| | A 1 | 1.1 b | |
| | $\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3)^{*}$ | M 1 | 2.1 |
| | $\mathrm{~A} 1 *$ | 1.1 b | |

(7 marks)
2.
a)

Examples:
$\left(\begin{array}{cc}\cos 120 & -\sin 120 \\ \sin 120 & \cos 120\end{array}\right)\binom{6}{2}=\ldots$ or $(6+2 \mathrm{i})\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i}\right)$
or $\sqrt{40}\left(\cos \arctan \left(\frac{2}{6}\right)+i \sin \arctan \left(\frac{2}{6}\right)\right)\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right) \quad$ M1 3.1a
or
$\sqrt{40}\left(\cos \left(\arctan \left(\frac{2}{6}\right)+\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(\arctan \left(\frac{2}{6}\right)+\frac{2 \pi}{3}\right)\right)$
or

$\sqrt{40} \mathrm{e}^{\text {orartan }\left(\frac{2}{6}\right)} \mathrm{e}^{\mathrm{i}\left(\frac{2 \pi}{3}\right)}$		
$(-3-\sqrt{3})$ or $(3 \sqrt{3}-1) \mathrm{i}$	A 1	1.1 b
$(-3-\sqrt{3})+(3 \sqrt{3}-1) \mathrm{i}$	A 1	1.1 b
Examples:		
$\left(\begin{array}{cc}\cos 240 & -\sin 240 \\ \sin 240 & \cos 240\end{array}\right)\binom{6}{2}=\ldots$ or $(6+2 \mathrm{i})\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}\right)$	M1	3.1 a

$\left.\begin{array}{c|c|c}\text { or } \\ \sqrt{40}\left(\cos \left(\arctan \left(\frac{2}{6}\right)+\frac{4 \pi}{3}\right)+\mathrm{i} \sin \left(\arctan \left(\frac{2}{6}\right)+\frac{4 \pi}{3}\right)\right) \\ \text { or } \\ \sqrt{40} \mathrm{e}^{\mathrm{iarctan}\left(\frac{2}{6}\right)} \mathrm{e}^{\mathrm{i}\left(\frac{4 \pi}{3}\right)}\end{array}\right)$
(b)

Way 1
Area $A B C=3 \times \frac{1}{2} \sqrt{6^{2}+2^{2}} \sqrt{6^{2}+2^{2}} \sin 120^{\circ}$
or
M1
2.1

Area $A O B=\frac{1}{2} \sqrt{6^{2}+2^{2}} \sqrt{6^{2}+2^{2}} \sin 120^{\circ}$		
Area $D E F=\frac{1}{4} A B C$ or $\frac{3}{4} A O B$	dM1	3.1 a
$=\frac{3}{8} \times 40 \times \frac{\sqrt{3}}{2}=\frac{15 \sqrt{3}}{2}$	Al	1.1 b
	(3)	

Many other ways possible. See full ms from 2019 for additional solutions

