QQQ – Statistics Yr2 - Chapter 1 – More complex numbers Total Marks: 24

(24 = Platinum, 22 = Gold, 19 = Silver, 17 = Bronze)

- 1. A complex number z has modulus 1 and argument θ .
 - (a) Show that

$$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta, \qquad n \in \mathbb{Z}^{+}$$
(2)

(b) Hence, show that

$$\cos^4\theta = \frac{1}{8}(\cos 4\theta + 4\cos 2\theta + 3) \tag{5}$$

- 2. In an Argand diagram, the points A, B and C are the vertices of an equilateral triangle with its centre at the origin. The point A represents the complex number 6 + 2i.
 - (a) Find the complex numbers represented by the points B and C, giving your answers in the form x + iy, where x and y are real and exact.

(6)

(3)

The points D, E and F are the midpoints of the sides of triangle ABC.

(b) Find the exact area of triangle DEF.

3. The infinite series C and S are defined by

$$C = \cos\theta + \frac{1}{2}\cos 5\theta + \frac{1}{4}\cos 9\theta + \frac{1}{8}\cos 13\theta + \dots$$
$$S = \sin\theta + \frac{1}{2}\sin 5\theta + \frac{1}{4}\sin 9\theta + \frac{1}{8}\sin 13\theta + \dots$$

Given that the series C and S are both convergent,

(a) show that

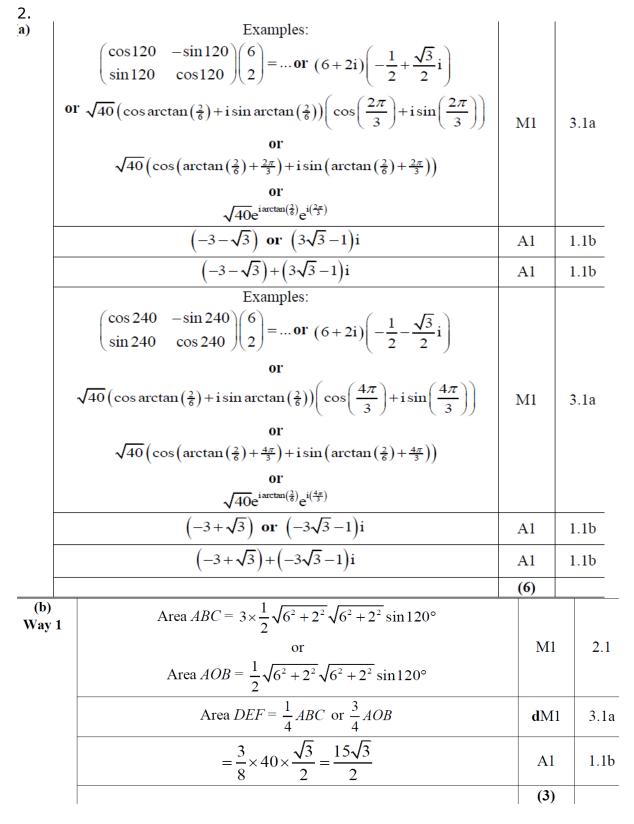
$$C + iS = \frac{2e^{i\theta}}{2 - e^{4i\theta}}$$
(4)

(b) Hence show that

$$S = \frac{4\sin\theta + 2\sin3\theta}{5 - 4\cos4\theta}$$
(4)

b) $\frac{(z+z^{-1})^4 = 16\cos^4\theta}{(z+z^{-1})^4 = 16\cos^4\theta}$ $= z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}$ $= z^4 + z^{-4} + 4(z^2 + z^{-2}) + 6$ $= 2\cos 4\theta + 4(2\cos 2\theta) + 6$ M1 2.1	Soluti	ons		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a)	$z^{n} + z^{-n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$	M1	2.1
b) $\frac{(z+z^{-1})^4 = 16\cos^4\theta}{(z+z^{-1})^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}}$ $= z^4 + z^{-4} + 4(z^2 + z^{-2}) + 6$ $= 2\cos 4\theta + 4(2\cos 2\theta) + 6$ $M1 2.1$ $= 2\cos 4\theta + 4(2\cos 2\theta) + 6$ $M1 2.1$ $A1* 1.1b$		$=2\cos n\theta^*$	A1*	1.1b
$\frac{(z+z^{-1})^{4} = z^{4} + 4z^{2} + 6 + 4z^{-2} + z^{-4}}{(z+z^{-1})^{4} = z^{4} + 4(z^{2} + z^{-2}) + 6}$ $= z^{4} + z^{-4} + 4(z^{2} + z^{-2}) + 6$ $= 2\cos 4\theta + 4(2\cos 2\theta) + 6$ $M1 \qquad 2.1$ $\cos^{4} \theta = \frac{1}{8}(\cos 4\theta + 4\cos 2\theta + 3)^{*}$ $A1^{*} \qquad 1.1b$			(2)	
$= z^{4} + z^{-4} + 4(z^{2} + z^{-2}) + 6$ $= 2\cos 4\theta + 4(2\cos 2\theta) + 6$ $M1 \qquad 2.1$ $\cos^{4} \theta = \frac{1}{8}(\cos 4\theta + 4\cos 2\theta + 3)^{*}$ $A1^{*} \qquad 1.1b$	b)	$\left(z+z^{-1}\right)^4=16\cos^4\theta$	B1	2.1
$= 2\cos 4\theta + 4(2\cos 2\theta) + 6$ $M1 \qquad 2.1$ $\cos^4 \theta = \frac{1}{8}(\cos 4\theta + 4\cos 2\theta + 3)^*$ $A1^* \qquad 1.1b$		$\left(z+z^{-1}\right)^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}$	M1	2.1
$\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3)^*$ A1* 1.1b		$= z^{4} + z^{-4} + 4(z^{2} + z^{-2}) + 6$	A1	1.1b
8		$= 2\cos 4\theta + 4(2\cos 2\theta) + 6$	M1	2.1
(5)		$\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3)^*$	A1*	1.1b
			(5)	

(7 marks)



Many other ways possible. See full ms from 2019 for additional solutions

3. a) y 1	$C + iS = \cos\theta + i\sin\theta + \frac{1}{2}(\cos 5\theta + i\sin 5\theta)\left(+ \frac{1}{4}(\cos 9\theta + i\sin 9\theta) + \dots \right)$	M1	1.	1b
	$= e^{i\theta} + \frac{1}{2}e^{5i\theta}\left(+\frac{1}{4}e^{9i\theta} + \dots\right)$	A1	2	.1
	$C + iS = \frac{e^{i\theta}}{1 - \frac{1}{2}e^{4i\theta}}$	M1	3.	1a
	$=\frac{2e^{i\theta}}{2-e^{4i\theta}}*$	A1*	1.	1b
		(4)		
y 2	$C + iS = \cos\theta + i\sin\theta + \frac{1}{2}(\cos 5\theta + i\sin 5\theta)\left(+ \frac{1}{4}(\cos 9\theta + i\sin 9\theta) + \dots \right)$	M1	1.	1b
	$C + iS = \cos\theta + i\sin\theta + \frac{1}{2}(\cos\theta + i\sin\theta)^{5} \left(+ \frac{1}{4}(\cos\theta + i\sin\theta)^{9} + \dots \right)$	A1	2	.1
	$C + iS = \frac{\cos\theta + i\sin\theta}{1 - \frac{1}{2}(\cos\theta + i\sin\theta)^4} = \frac{e^{i\theta}}{1 - \frac{1}{2}e^{4i\theta}}$	M1	3.	1a
	$=\frac{2e^{i\theta}}{2-e^{4i\theta}}*$	A1*	1.	1b
		(4)		
(b) Way 1	$\frac{2\mathrm{e}^{\mathrm{i}\theta}}{2-\mathrm{e}^{4\mathrm{i}\theta}} \times \frac{2-\mathrm{e}^{-4\mathrm{i}\theta}}{2-\mathrm{e}^{-4\mathrm{i}\theta}}$	М	[1	3.1a
	$\frac{4e^{i\theta} - 2e^{-3i\theta}}{4 - 2e^{-4i\theta} - 2e^{4i\theta} + 1}$	A	.1	1.1t
	$4\cos\theta + 4i\sin\theta - 2\cos 3\theta + 2i\sin 3\theta$			
	$5-2\cos 4\theta+2i\sin 4\theta-2\cos 4\theta-2i\sin 4\theta$	dN	/ 11	2.1
	Dependent on the first M			
	$S = \frac{4\sin\theta + 2\sin 3\theta}{5 - 4\cos 4\theta} *$	A	1*	1.1b
	$3-4\cos 4\theta$	(4	<u>n</u> +	
(b)	$2^{-i\theta}$ $2(\cos\theta + i\sin\theta)$ $2(\cos4\theta + i\sin\theta)$	(9	
Way 2	$\frac{2e^{i\theta}}{2-e^{4i\theta}} = \frac{2(\cos\theta + i\sin\theta)}{2-(\cos4\theta + i\sin4\theta)} \times \frac{2-(\cos4\theta - i\sin4\theta)}{2-(\cos4\theta - i\sin4\theta)}$	M	[1	3.1a
	$\frac{4\cos\theta + 4i\sin\theta - 2\cos\theta\cos4\theta - 2\sin\theta\sin4\theta + 2i\sin4\theta\cos\theta - 2i\sin\theta\cos4\theta}{4+\cos^24\theta + \sin^24\theta - 4\cos4\theta}$	<u>-</u> A	.1	1.1b
	$\frac{4\cos\theta + 4i\sin\theta - 2\cos 3\theta + 2i\sin 3\theta}{5 - 2\cos 4\theta + 2i\sin 4\theta - 2\cos 4\theta - 2i\sin 4\theta}$ Dependent on the first M	dN	/ 11	2.1
	$S = \frac{4\sin\theta + 2\sin 3\theta}{5 - 4\cos 4\theta} *$		1*	1.1b