QQQ - Core Pure 2 - Chapter 5 - Polar Coordinates
 Total Marks: 21

(21 = Platinum, 19 = Gold, 17 = Silver, $15=$ Bronze)
1.

Figure 1
The curve C_{1} with equation

$$
r=7 \cos \theta, \quad-\frac{\pi}{2}<\theta \leqslant \frac{\pi}{2}
$$

and the curve C_{2} with equation

$$
r=3(1+\cos \theta), \quad-\pi<\theta \leqslant \pi
$$

are shown on Figure 1.
The curves C_{1} and C_{2} both pass through the pole and intersect at the point P and the point Q.
(a) Find the polar coordinates of P and the polar coordinates of Q.

The regions enclosed by the curve C_{1} and the curve C_{2} overlap, and the common region R is shaded in Figure 1.
(b) Find the area of R.
2.

Figure 1
The curve C, shown in Figure 1, has polar equation

$$
r=3 a(1+\cos \theta), \quad 0 \leqslant \theta<\pi
$$

The tangent to C at the point A is parallel to the initial line.
(a) Find the polar coordinates of A.

The finite region R, shown shaded in Figure 1, is bounded by the curve C, the initial line and the line $O A$.
(b) Use calculus to find the area of the shaded region R, giving your answer in the form $a^{2}(p \pi+q \sqrt{3})$, where p and q are rational numbers.

Solutions

8(a)	$7 \cos \theta=3+3 \cos \theta \Rightarrow \cos \theta=\frac{3}{4} \quad \theta=\ldots$	Solve to $\theta=\ldots$	M 1		
	$P\left(\frac{21}{4}, \alpha\right)$ and $Q\left(\frac{21}{4},-\alpha\right)$ or $\left(\frac{21}{4}, 2 \pi-\alpha\right)$	A1: Angles correct, Decimal for α to be 3 sf minimum	Al		
where $\alpha=\arccos \frac{3}{4}$ or $0.7227 \ldots$	A1: r to be $\frac{21}{4}, 5 \frac{1}{4}$ or 5.25				
Need not be in coordinate brackets				\quad	Alcao
:---					

\begin{tabular}{|c|c|c|c|}
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \left(2 \times \frac{1}{2}\right) \int(7 \cos \theta)^{2} \mathrm{~d} \theta \\
\& =\frac{49}{2} \int(\cos 2 \theta+1) \mathrm{d} \theta \\
\& =\frac{49}{2}\left[\frac{1}{2} \sin 2 \theta+\theta\right]
\end{aligned}
\] \\
OR Area of sector \(=\frac{1}{2} r^{2}(\beta-\sin \beta)\)
\[
=\frac{1}{2}\left(\frac{7}{2}\right)^{2}(\pi-2 \alpha-\sin (\pi-2 \alpha))
\]
\end{tabular} \& \begin{tabular}{l}
M1: Use of \(\frac{1}{2} \int r^{2} \mathrm{~d} \theta\) for \(C_{1}\) leading to \(k \int(\cos 2 \theta \pm 1) \mathrm{d} \theta\) OR Area of a segment \\
A1: Correct integration of \(49 \cos ^{2} \theta\) Ignore any limits shown. OR correct expression for the area of the sector
\end{tabular} \& M1

A1

\hline \& $$
\begin{aligned}
& \left(2 \times \frac{1}{2}\right) \int(3+3 \cos \theta)^{2} \mathrm{~d} \theta \\
& =9 \int\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta \\
& =9 \int\left(1+2 \cos \theta+\frac{1}{2}(\cos 2 \theta+1)\right) \mathrm{d} \theta
\end{aligned}
$$ \& M1: Set up the integral for C_{2} and reach

$$
k \int\left(1+2 \cos \theta+\frac{1}{2}(\cos 2 \theta \pm 1)\right) \mathrm{d} \theta
$$ \& M1

\hline \& $=\left[9 \theta+18 \sin \theta+\frac{9}{2}\left(\frac{1}{2} \sin 2 \theta+\theta\right)\right]_{0}^{\alpha}$ \& | dM1: Correct integration of the trig functions $\cos \theta \rightarrow \pm \sin \theta$, $\cos 2 \theta \rightarrow \pm \frac{1}{2} \sin 2 \theta$ |
| :--- |
| A1 Fully correct integration with limits, $0 \rightarrow \alpha$ or $-\alpha \rightarrow \alpha$ | \& dM1

A1

\hline \& \[
$$
\begin{aligned}
& \text { Area }=9 \alpha+18 \sin \alpha+\frac{9}{2}\left(\frac{1}{2} \sin 2 \alpha+\alpha\right) \\
& +\frac{49 \pi}{4}-\frac{49}{2}\left(\frac{1}{2} \sin 2 \alpha+\alpha\right)
\end{aligned}
$$

\] \& | dM1: Depends on all 3 M marks above |
| :--- |
| Combine areas correctly to find the required area. Use of correct limits required. | \& dM1

\hline \& $\frac{49 \pi}{4}+\frac{3 \sqrt{7}}{4}-11 \alpha$ or 32.5 \& A1cso Correct answer, exact or awrt 32.5 \& | A1cso |
| :--- |
| (7) |
| Total 10 |

\hline
\end{tabular}

2.

(a)M1 using $r \sin \theta \quad r \cos \theta$ scores M0
dM1 Attempt the differentiation of $r \sin \theta$, inc use of product rule or $\sin 2 \theta=2 \sin \theta \cos \theta$
A1 Correct 3 term quadratic in $\cos \theta$
ddM1 dep on both M marks. Solve their quadratic (usual rules) giving one or two roots
A1 Correct quadratic solved to give $\theta=\frac{\pi}{3}$
A1 Correct r obtained No need to see coordinates together in brackets
Special Case: If $r \cos \theta$ used, score M0M1A0M0A0A0to
(b)

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \int^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} 9 a^{2}(1+\cos \theta)^{2} \mathrm{~d} \theta \\
& =\frac{9 a^{2}}{2} \int_{0}^{\frac{\pi}{3}}\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta \\
& =\frac{9 a^{2}}{2} \int_{0}^{\frac{\pi}{3}}\left(1+2 \cos \theta+\frac{1}{2}(\cos 2 \theta+1)\right) \mathrm{d} \theta \\
& =\frac{9 a^{2}}{2}\left[\theta+2 \sin \theta+\frac{1}{2}\left(\frac{1}{2} \sin 2 \theta+\theta\right)\right]_{0}^{\frac{\pi}{3}} \\
& \frac{9 a^{2}}{2}\left[\frac{\pi}{3}+\sqrt{3}+\frac{1}{4} \times \frac{\sqrt{3}}{2}+\frac{\pi}{6}(-0)\right] \\
& \frac{9 a^{2}}{2}\left[\frac{\pi}{2}+\frac{9 \sqrt{3}}{8}\right]=\left(\frac{9 \pi}{4}+\frac{81 \sqrt{3}}{16}\right) a^{2}
\end{aligned}
$$

(b)M1 Use of correct area formula, $\frac{1}{2}$ may be seen later, inc squaring the bracket to obtain 3 terms - limits need not be shown.
M1 Use double angle formula (formula to be of form $\cos ^{2} \theta= \pm \frac{1}{2}(\cos 2 \theta \pm 1)$) to obtain an integrable function - limits need not be shown, $\frac{1}{2}$ from area formula may be missing,
dM1 attempt the integration - limits not needed - dep on $2^{\text {nd }} \mathrm{M}$ mark but not the first
A1 correct integration - substitution of limits not required
A1 correct final answer any equivalent provided in the demanded form.

