Oxford Cambridge and RSA

## GCSE (9-1) Mathematics J560/06 Paper 6 (Higher Tier) Practice Paper

## Date - Morning/Afternoon

Time allowed: 1 hour 30 minutes

You may use:

- A scientific or graphical calculator
- Geometrical instruments
- Tracing paper



## INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Read each question carefully before you start your answer.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.


## INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [ ].
- Use the $\pi$ button on your calculator or take $\pi$ to be 3.142 unless the question says otherwise.
- This document consists of $\mathbf{1 6}$ pages.

Answer all the questions
1 A bakery bakes small, medium and large pies.
The ratio small : medium : large is $3: 5: 2$.
(a) What fraction of the pies are large?
(a) $\frac{2}{10}=\frac{1}{5}$
(b) One day 460 medium pies are baked.

Work out how many small pies are baked.

$$
\begin{gathered}
S M_{3} \underbrace{n}_{\substack{5}} 2 \\
3 \times 92
\end{gathered}
$$

(b)

$$
276
$$

2 A triangle has sides of length $23.8 \mathrm{~cm}, 31.2 \mathrm{~cm}$ and 39.6 cm .
Is this a right-angled triangle?
Show how you decide.

$$
\begin{aligned}
23 \cdot 8^{2}+31 \cdot 2^{2} & =1539.88 \\
\sqrt{1539.88} & =39 \cdot 24130 \ldots \neq 39.6 \mathrm{~cm}
\end{aligned}
$$

At is not night angled
$\qquad$
$\qquad$

3 (a) Solve.

$$
\begin{aligned}
4 x-7 & =8-2 x \\
6 x & =15 \\
x & =\frac{15}{6}=\frac{5}{2}
\end{aligned}
$$

(a) $x=$ $\qquad$
(b) Solve this inequality.

$$
5 x+9>13
$$

$$
\begin{aligned}
5 x & >4 \\
x & >\frac{4}{5}
\end{aligned}
$$

(b) $x>\frac{4}{5}$
(c) Rearrange this formula to make $x$ the subject.

$$
\begin{aligned}
& y=\sqrt{4 x-3} \\
& y^{2}=4 x-3 \\
& y^{2}+3=4 x \\
& x=\frac{y^{2}+3}{4}
\end{aligned}
$$

(c)

$$
x=\frac{y^{2}+3}{4}
$$

$$
x=04
$$

4 John is going to drive from Cambridge to Newcastle.

$S=\frac{D}{T}$
$T=\frac{D}{S}$
(a) John needs to be in Newcastle at 11 am .

He drives at an average speed of 60 miles per hour.
What time does he need to leave Cambridge?

$$
\begin{aligned}
\text { Dertance } & =4 \mathrm{~cm} \quad 1 \mathrm{~cm}=50 \text { miles } \\
& \times 50 \\
& =200 \text { miles }
\end{aligned}
$$

$T=\frac{20 \phi}{60}=3 \cdot \dot{3}=3$ hours 20 mmes
07:40 3h20mins 11

(b) State one assumption you have made.

Explain how this has affected your answer to part (a).

## Shave assumed he doeun't shop for a breath during the gamey. If he does ut. well take langer

$\qquad$

5 When water freezes into ice its volume increases by $9 \%$.
What volume of water freezes to make $1962 \mathrm{~cm}^{3}$ of ice?


$$
1962 \div 1.09=1800
$$

6 The table shows data for the UK about its population and the total amount of money spent on healthcare in 2002, 2007 and 2012.

(a) How much more was spent on healthcare in 2007 than in 2002? Give your answer in millions of pounds.

$$
\begin{aligned}
& 1.2 \times 10^{11}-8.14 \times 10^{10} \\
& 3.86 \times 10^{10} \\
& 38600,000,000 \\
& \frac{\text { million }}{}
\end{aligned}
$$


(a) £ ..38....600 ...... million
[3]
(b) Marcia says

The amount spent on healthcare per person in the UK doubled in 10 years.

Use the information in the table to comment on whether Marcia is correct.

|  | Epeperson |  |
| :--- | :--- | :--- |
| 2002 | E1370.37 | $\times 2=2740.74$ |
| 2007 | $E(957.59$ |  |
| 2012 | $E 2276.30$ | $2740.74>2276.30$ |

...Marcia io encaneel $\qquad$

7 OPQ is a sector of a circle, centre O and radius 9 cm .


Not to scale

$$
\begin{array}{rl}
0.18 \mathrm{~cm} & C
\end{array}=\pi D
$$

Find the perimeter of the sector.
Give your answer in terms of $\pi$.

$$
\begin{aligned}
& \frac{140}{360} \times \pi \times 18=7 \pi \\
& \text { Permute }=7 \pi+18
\end{aligned}
$$

$\qquad$

8 (a) Write down the reciprocal of 8.
(a)..... .8

9 Triangle $\mathbf{A}$ is drawn on the coordinate grid.


Zara and Sam each transform triangle A onto triangle B.

- Zara uses a rotation of $90^{\circ}$ clockwise about the origin followed by a reflection in $x=3$.
- Sam uses a reflection in $y=-\quad$ followed by a transformation T.
(a) Draw and label triangle B.
(b) Describe fully transformation T .

Tramlation using vector $\binom{6}{0}$

10 P has coordinates ( $0,-1$ ) and $Q$ has coordinates (4, 1).

(a) Find the equation of line $P Q$.

$$
y=\frac{1}{2} x-1
$$

(a) $. \quad y=\frac{1}{2} x-1$
(b) P and Q are two vertices of rectangle PQRS.

Find the equation of line $Q R$.
lune or

$$
y=-2 x+c
$$

$$
\begin{array}{ll}
x=4 & 1=-2 \times 4+c \\
y=1 & 1+8=c=9
\end{array}
$$

(b) $y=-2 x+9$

11 Omar surveyed a group of workers to find their hourly rate of pay.
His results are summarised in the histogram.

(a) Show that Omar surveyed 250 workers.

| $5-7.5=2.5 \times 12$ | 30 |
| :--- | :--- | :--- |
| $7.5-10=2.5 \times 26$ | 65 |
| $10-15=5 \times 15$ | 75 |
| $15-20=5 \times 12$ | 60 |
| $20-40=20 \times 1$ | 20 |

$$
\begin{aligned}
30+65+75 & +60+20 \\
& =250
\end{aligned}
$$

(b) The UK living wage is $£ 7.85$ per hour.

A newspaper states that one fifth of workers earn less than the living wage.
(i) Does Omar's survey support the statement in the newspaper? Show how you decide.

$$
\frac{1}{5} \text { of } 250=50
$$

$$
\text { £7.85 } \quad \begin{aligned}
2 . & 5 \times 12+0.35 \times 26 \\
& 30+9.1 \\
= & 39.1
\end{aligned}
$$

$39 \cdot 1<50$ so hus survey doeanat support the statement
(ii) Explain why your calculations in part (b)(i) may not give the exact number of workers earning less than the living wage.

## We dan' know the exact values within each interval

$\qquad$
(c) Omar used this table to record the ages of the people in his survey.

| Age (a years) | $18 \leqslant a \leqslant 20$ | $20 \leqslant a \leqslant 30$ | $30 \leqslant a \leqslant 40$ | $40 \leqslant a \leqslant 50$ | $50 \leqslant a \leqslant 70$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | $18 \leqslant a<20$ | $<30$ | $<40$ | $<50$ | $<70$ |

Comment on one problem with his table.
the intervalsovelap

12 The diagram shows trapezium $A B C D$.
$E$ is the midpoint of $A D$.
$B C E$ is an equilateral triangle.


Not to scale

Prove that triangle $A B E$ is congruent to triangle DCE.

$$
\begin{aligned}
& B E=E C \quad \text { (equilateral triangle) } \\
& A E=E D \quad \text { (midpoint of } A D) \\
& \widehat{B E A}=C \widehat{E D}
\end{aligned}
$$

therefor $A B C$ is congment to $D C E$ (SAP)
$\qquad$
$\qquad$
$\qquad$
$\qquad$

13 (a) The graph shows the speed of a car during the first 30 seconds of its journey.

(i) State the acceleration of the car after 20 seconds.
(a)(i) $\qquad$ $\mathrm{m} / \mathrm{s}^{2}$
(ii) Find the total distance travelled by the car in the 30 seconds.

$$
72+396
$$

(ii) $\qquad$
(b) The speed $v$ of a train is $68 \mathrm{~km} / \mathrm{h}$, correct to the nearest $\mathrm{km} / \mathrm{h}$.

Write down an inequality to show the error interval for $v$.
(b) $67.5 \leq v<68.5$
(c) The graph shows the distance travelled by a lorry in 12 seconds.


Estimate the speed of the lorry after 5 seconds.

$$
10 \div 2
$$

(c)

5
$\mathrm{m} / \mathrm{s}$ [4]

14 An activity camp has climbing and sailing classes.

- 50 children attend the activity camp.
- 35 children do climbing.
- 10 children do both classes. $V$

50-37

- 2 children do neither class.
(a) Represent this information on a Venn diagram.

(b) A child attending the activity camp is selected at random.

Find the probability that this child
(i) did exactly one class,

$$
25+13
$$

(ii) did sailing, given that they did not do climbing.
(ii)
$\frac{13}{15}$

15 Show that

$$
\begin{aligned}
& \frac{\frac{4}{x-3}-\frac{2}{x+1}=\frac{2(x+5)}{(x-3)(x+1)}}{\begin{aligned}
\frac{4(x+1)-2(x-3)}{(x-3)(x+1)} & =\frac{4 x+4-2 x+6}{(x-3)(x+1)} \\
& =\frac{2 x+10}{(x-3)(x+1)}=\frac{2(x+5)}{(x-3)(x+1)} Q \in D
\end{aligned}} .\left\{\begin{array}{l}
\text { (x-1)}
\end{array}\right.
\end{aligned}
$$

16 The diagram shows the positions of three hills, $A, B$ and $C$.

$B$ is 23 km from A on a bearing of $070^{\circ}$.
$C$ is 15 km from A .
Angle $\mathrm{ACB}=54^{\circ}$.
Find the bearing of C from A .

$$
\begin{aligned}
A & =180-(31.8+54) \\
& =94 \cdot 1552265 \\
& =94.2^{\circ}(1 \mathrm{dp})
\end{aligned}
$$

Not to scale

$$
\frac{23}{\sin 54}=\frac{15}{\sin B}
$$

$$
\sin B=\frac{15 \times \sin 54}{23}
$$

$$
\begin{aligned}
& B=\operatorname{sun}^{-1}\left(\frac{15 \sin 54}{23}\right) \\
&=31.8447735 \\
&=31.8^{\circ}(1 \mathrm{dp})
\end{aligned}
$$

$$
\begin{gathered}
\text { Bearing }=70+94 \cdot 2 \\
164 \cdot 2^{\circ}(1 \mathrm{dp}) \\
164^{\circ}
\end{gathered}
$$

17 A cuboid has length $x \mathrm{~cm}$.
The width of the cuboid is 4 cm less than its length. The height of the cuboid is half of its length.
(a) The surface area of the cuboid is $90 \mathrm{~cm}^{2}$.
not volume!
Show that $2 x^{2}-6 x-45=0$.


$$
\begin{aligned}
& 2 \times\left[\frac{x}{2} \times x\right]+[2 \times x(x-4)]+2\left[\frac{x}{2}(x-4)\right]=90 \\
& 2 \times \frac{x^{2}}{2}+2\left(x^{2}-4 x\right)+2\left(\frac{x^{2}}{2}-2 x\right)=90 \\
& x^{2}+2 x^{2}-8 x+x^{2}-4 x=90 \\
& \div 2 x^{2}-12 x-90=0 \\
& \div 2 x^{2}-6 x-45=0
\end{aligned}
$$

(b) Work out the volume of the cuboid.

$$
\begin{aligned}
& \text { need" } x^{\prime \prime} \quad 2 x^{2}-6 x-45=0 \\
& x=\frac{-(-6) \pm \sqrt{6^{2}-4 \times 2 \times 45}}{2 \times 2} \\
& =\frac{6 \pm \sqrt{396}}{4} \\
& \frac{6+\sqrt{396}}{4} \quad \frac{6 \cdot \sqrt{396}}{4} \\
& x=6.474937186 \text { nokasolution } \\
& \text { (b) } \\
& \text { Volume }=\left(\frac{6+\sqrt{396}}{4}\right) \times \frac{1}{2}\left(\frac{6+\sqrt{396}}{4}\right) \\
& x\left(\frac{6+\sqrt{396}}{4}-4\right) \\
& =51.880637 \text {.. } \\
& 51.9(\mathrm{ldp}) \text {.....cm }{ }^{3} \text { [6] }
\end{aligned}
$$

Copyright Information
Contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

