LEVEL 2 CERTIFICATE FURTHER MATHEMATICS 8360/2

Paper 2 Calculator

Mark scheme

June 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M

M dep

A

B

B dep
ft

SC
oe
[a, b]
3.14...

Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$
Method marks are awarded for a correct method which could lead to a correct answer.

A method mark dependent on a previous method mark being awarded.

Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

Marks awarded independent of method.

A mark that can only be awarded if a previous independent mark has been awarded.

Follow through marks. Marks awarded following a mistake in an earlier step.

Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Accept values between a and b inclusive.

Accept answers which begin 3.14 eg $3.14,3.142,3.1416$

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods
Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
1(b)	$2 m+2=1$ or $2 m+1=0$ or $\frac{1-2}{2}$ or $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	M1	oe equation or calculation	
	$-\frac{1}{2}$ or -0.5	A1		
		tional	uidance	
	Condone missing brackets in	$\left.\begin{array}{c}m+1 \\ 1\end{array}\right)=$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	
	Allow $\left(\begin{array}{cc}2 m+2 & 2 m+1 \\ 2-2 & 2-1\end{array}\right)=\left(\begin{array}{l}1 \\ 0\end{array}\right.$			
	Mark positively eg error in matrix multiplication	$2=1 \mathrm{a}$	d answer -0.5	M1 A1
	More than one answer given is eg $m+2=1$ and $2 m+1=0$ Answer -1 and -0.5	positive		$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$

Q	Answer	Mark	Comments
2	$\left(\frac{4+6}{2}, \frac{1+9}{2}\right)$ or $(5,6)$	M1	oe eg $\left(4+\frac{6-4}{2}, 1+\frac{11-1}{2}\right)$ may be on diagram
	$\frac{1--3}{4-10} \text { or } \frac{4}{-6}$ or $\frac{0-\text { their } 6}{14-\text { their } 5} \text { or } \frac{-6}{9}$	M1	oe method for at least one gradient or at least one unsimplified gradient seen eg $\frac{-3-1}{10-4}$ or $\frac{-4}{6}$ or $\frac{\text { their } 6-0}{\text { their } 5-14}$ or $\frac{6}{-9}$ $\frac{6-0}{5-14}$ or $\frac{6}{-9}$ is M1M1
	$\frac{1--3}{4-10}$ or $\frac{4}{-6}$ and $\frac{0-6}{14-5}$ or $\frac{-6}{9}$ and shows that the gradients are equal	A1	oe method for both gradients or two unsimplified gradients seen and gradients shown to be equal eg $\frac{4}{-6}$ and $\frac{-6}{9}$ and these are both $-\frac{2}{3}$ SC2 $(5,6)$ and at least one gradient given as $-\frac{2}{3}$ SC1 at least one gradient given as $-\frac{2}{3}$

Additional Guidance is on the next page

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

$\stackrel{2}{\text { cont }}$	Additional Guidance	
	Mark intention for 1st M1 eg condone 5, 6	M1
	$\frac{4}{-6}=-\frac{2}{3}$ and $\frac{-6}{9}=-\frac{2}{3}$	M2A1
	$\frac{1--3}{4-10}=-\frac{2}{3}$ and $\frac{0-6}{14-5}=-\frac{2}{3}$	M2A1
	$\frac{4}{-6}=\frac{-6}{9}$	M2A1
	$\frac{4}{-6}$ and $\frac{-6}{9}$ and parallel	M2A0
	$\frac{4}{6}$ is 2 nd M0 unless recovered to $-\frac{4}{6}$	
	$\frac{4}{6}$ recovered to $-\frac{4}{6}$ and $\frac{6}{9}$ recovered to $-\frac{6}{9}$ could go on to score full marks	
	both gradients $=-\frac{2}{3}$ with no method or unsimplified gradients seen cannot score the A mark	
	$\frac{4}{-6} x$ or $\frac{-6}{9} x$ do not score 2 nd M1 unless recovered	
	Equation of a line does not score 2nd M1 unless a method or unsimplified gradient seen	
	Using the reciprocals of gradients can score a maximum of M1M0A0	
	Allow $-0.66 \ldots$ or -0.67 for $-\frac{2}{3}$ and $\frac{4}{-6}$ etc Ignore conversion attempt after a correct fraction is seen	
	$\begin{aligned} & \text { or method for } \frac{4}{-6} \\ & 1=4 m+c \quad \text { and } \quad-3=10 m+c \\ & 4=-6 m \\ & \frac{4}{-6}=m \quad \text { (similar method possible for } \frac{-6}{9} \text {) } \end{aligned}$	(2nd) M1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3	$\begin{array}{llll} a^{2}<0 & & \square & \square \\ -1<b^{3}<1 & \square & \square & \square \\ \frac{b}{a}<0 & \square & \square & \square \\ a-b>0 & \square & \square & \square \\ \hline \end{array}$	B4	B1 for each correct row	
	Additional Guidance			
	Two boxes ticked in a row with other 3 rows fully correct			B3
	One row correct, two rows blank, all three boxes ticked in another row			B1
	Only crosses used instead of ticks eg cross in all 4 correct boxes with all other boxes blank			B4
	Ticks and crosses used - only mark the ticks for that row eg Top row has $X \times \checkmark$ scores B1 for that row Second row has $X \quad X$ scores B0 for that row			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	$(y=) \frac{3}{2} x \ldots$ or $\quad(y=) 1.5 x \ldots$ or $\frac{3}{2}$ or 1.5	M1	oe eg $(y=) \frac{3 x-9}{2}$
	$\frac{x^{5}-17}{10}=\frac{3}{2}$ $x^{5}=\frac{3}{2} \times 10+17$ or $\sqrt[5]{32}$ or correctly rearranges $\frac{x^{5}-17}{10}=k$ to the form $x^{5}=$ $(k$ any non-zero value $)$	M1dep	oe implies M2
	M1 oe eg $x^{5}=15+17$ or $x^{5}=32$ or $\sqrt[5]{15+17}$ must rearrange to the form $x^{5}=$		

Additional Guidance is on the next page

Q	Answer	Mark	Comments	
$\begin{gathered} 4 \\ \text { cont } \end{gathered}$	Additional Guidance			
	Condone error seen in rearrangement of $3 x-2 y=9$ if gradient is $\frac{3}{2}$ May go on to score M3A1			
	$\frac{x^{5}-17}{10}=\frac{3}{2} x$			M1M0M0A0
	(gradient =) 3 $\frac{x^{5}-17}{10}=3$ $x^{5}=30+17 \quad$ (3rd M is not dependent) 2.16			MOMOdep M1 A0
	$\frac{3}{2}$ $\begin{aligned} & \frac{x^{5}-17}{10}=-\frac{2}{3} \\ & x^{5}=-\frac{2}{3} \times 10+17 \\ & 1.595 \end{aligned}$ (3rd M is not dep	dent)		M1 M0 M1 A0
	Condone answer ($2, \ldots$)			
	2 embedded			M3A0

\mathbf{Q}	Answer	Mark	Comments

5(a)	a^{-2}	B2	B1 applies an index law or root to fractional or decimal correct expression eg $\sqrt[4]{a^{-8}}$ or $\left(a^{-8}\right)^{\frac{1}{4}}$ or $\left(a^{8}\right)^{-}$ or $a^{-\frac{8}{4}}$ or $\frac{1}{a^{\frac{8}{4}}}$ or $\frac{1}{a^{2}}$ or $a^{\frac{1}{4}} \times a^{-\frac{9}{4}}$ or $a^{\frac{1}{4}} \times \frac{1}{a^{\frac{9}{4}}}$ or $\left(\frac{1}{a^{8}}\right)^{\frac{1}{4}}$ or $\sqrt[4]{\frac{1}{a^{8}}}$ or $\sqrt[4]{a \times \frac{1}{a^{9}}}$ or $\left(a \times a^{-9}\right)^{\frac{1}{4}}$ or $\left(a \times \frac{1}{a^{9}}\right)^{\frac{1}{4}}$	
	Additional Guidance			
	$a^{\frac{-8}{4}}$ or $a^{\frac{8}{-4}}$			B
	a^{-2} in working with -2 on answer line			B
	a^{-2} in working with $\frac{1}{a^{2}}$ on answer line			B
	B1 response followed by further work is still awarded B1			
	Allow 0.25 for $\frac{1}{4}$ etc			
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments
6(a)	$A\left(-\frac{3}{2}, 0\right)$ and $B(2,0)$	B2	oe B1 $\quad A\left(-\frac{3}{2}, 0\right)$ oe or $B(2,0)$ SC1 $A(2,0)$ and $B\left(-\frac{3}{2}, 0\right)$ oe
	Additional Guidance		
	Ignore the diagram		

6(b)	$-\frac{3}{2}<x<2$ or $2>x>-\frac{3}{2}$	B1ft	oe correct or ft their values from (a) must be a single inequality in x

Additional Guidance is on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

6(b) cont	Additional Guidance	
	$-\frac{3}{2} \leqslant x<2$	B0
	$-\frac{3}{2}>x<2$	B0
	$-\frac{3}{2}<x$ and $x<2$	B0
	their (a) $A(-2,0)$ and $B\left(\frac{3}{2}, 0\right) \quad(B 0$ in (a)) (b) $-2<x<\frac{3}{2}$	B1ft
	their (a) $A(2,0)$ and $B\left(-\frac{3}{2}, 0\right) \quad(\mathrm{SC} 1$ in (a)) (b) $2<x<-\frac{3}{2}$	B0ft
	their (a) $A(-3,0)$ and $B(2,0) \quad(\mathrm{B} 1$ in (a)) (b) $2<x<-3$	B0ft
	their (a) $A(4,0)$ and $B(-2,0) \quad(B 0$ in (a)) (b) $-2<x<4$	B1ft
	Only one value in (a) can only score in (b) for $-\frac{3}{2}<x<2$ or $2>x>-\frac{3}{2}$	

Q	Answer	Mark	Comments

7(a)	Horizontal straight line	B1	mark intention
	Additional Guidance		
	Ignore any attempt at an equation		
	Mark the entire graph on the grid		
	lgnore any graph not on the grid	B1	
	Line clearly drawn on the x-axis		
	Line does not need to start from the y-axis		
	lgnore any points plotted		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8(a)	$7+12 \sqrt{5}+6(9-2 \sqrt{5})$ or $12 \sqrt{5}+6(-2 \sqrt{5})=0$ or $12 \sqrt{5} \div 2 \sqrt{5}=6$ or states that need to add 6 lots of $(9-2 \sqrt{5})$ or 7th term	M1	oe eg $7+6 \times 9$ or $7+54$ or $6 \times-2=-12$ allow $7+12 \sqrt{5}+(n-1)(9-2 \sqrt{5})$ with $n=7$ allow $7+12 \sqrt{5}+n(9-2 \sqrt{5})$ with $n=6$	
	61	A1		
	Additional Guidance			
	61 in working lines with 7(th) on answer line			M1 A0
	If repeatedly adding $(9-2 \sqrt{5})$ they must stop after adding 6 lots or clearly select the relevant one			
	Answer 6 or 6th term with M1 not seen			MOAO
	Ignore any conversions to decimals			
	Beware $\quad(9-2 \sqrt{5})(9+2 \sqrt{5})=61$			MOAO

\mathbf{Q}	Answer	Mark	Comments

8(b)	$\frac{29}{5}$ or $5 \frac{4}{5}$ or 5.8	B2	oe eg $5 \frac{8}{10}$ B1 any two of $1, \frac{11}{5}, \frac{26}{10}$ oe values	
	Additional Guidance			
	Terms must be evaluated for B1 unless correct answer seen eg1 $\frac{3-1}{1+1}+\frac{12-1}{4+1}+\frac{27-1}{9+1}$ eg2 $\frac{3-1}{1+1}+\frac{12-1}{4+1}+\frac{27-1}{9+1}=5.8$			B0 B2
	172.6			B1
	Ignore conversion attempts after a correct value seen			

Q	Answer	Mark	Comments
8(c)	Alternative method 1		
	(Second differences =) 4 or $2 n^{2}$	M1	second differences seen at least once and not contradicted may be seen by the sequence
	$\begin{array}{llll} -3-2 & 3-8 & (13-18 & 27-32) \\ \text { or } \\ -5 & -5 & (-5 & -5) \end{array}$	M1dep	subtracts $2 n^{2}$ from the given terms
	$2 n^{2}-5$	A1	oe eg $2 n^{2}+0 n-5$ does not need terms collected
	Alternative method 2		
	(Second differences =) 4 or $2 n^{2}$	M1	second differences seen at least once and not contradicted may be seen by the sequence
	$3 a+b=3--3$ and substitutes $a=2$ or $b=0$	M1dep	oe
	$2 n^{2}-5$	A1	oe eg $2 n^{2}+0 n-5$ does not need terms collected

Mark scheme and Additional Guidance continue on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	$(p+6)^{10}(p+5)$ or $(p+5)(p+6)^{10}$	B2	B1 $(p+6)^{10}(p+6-1)$ or states $x=p+6$ and $x^{10}(x-1)$ (any letter for x other than p) or correct partial factorisation eg $(p+6)\left[(p+6)^{10}-(p+6)^{9}\right]$ or $(p+6)^{2}\left[(p+6)^{9}-(p+6)^{8}\right]$	
	Additional Guidance			
	Any shape of bracket may be used			
	$(p+6){ }^{10}((p+6)-1)$			B1
	Missing brackets must be recovered eg $p+5(p+6)^{10}$ not recovered and B 1 response not seen			B0
	Condone $(p+6)^{10}(p+5$			B2
	Condone $(p+6)^{10}(p+6-1$			B1
	$(p+6)^{10}(p+5)$ followed by expansion attempt			B1
	B1 response followed by expansion attempt			B1
	$(p+6)^{10} \times(p+5)$			B1
	Condone multiplication signs for B1 eg $(p+6)^{10} \times(p+6-1)$			B1
	$(p+6)^{11}\left[1-\frac{1}{p+6}\right]$			B1

Q	Answer	Mark	Comments

10(a)	$\begin{aligned} & \mathrm{f}(x) \leqslant 25 \\ & \text { or } \\ & 25 \geqslant \mathrm{f}(x) \end{aligned}$	B2	B1 $\mathrm{f}(x)<25$ or $k \leqslant \mathrm{f}(x) \leqslant 25$ or $k<\mathrm{f}(x) \leqslant 25$ where k is any number <25 SC1 $\leqslant 25$ or $x \leqslant 25$	
	Additional Guidance			
	Condone $\mathrm{f}(x)$ replaced by eg y or f or $\mathrm{f} x$ or $\mathrm{F}(x)$ or F or $\mathrm{F} x$ or $x^{3}-2$ in B2 or B1 responses			
	Equivalent inequalities may be seen$25>\mathrm{f}(x)$			B1
	Allow $-\infty<\mathrm{f}(x) \leqslant 25$			B2
	Condone $-\infty \leqslant \mathrm{f}(x) \leqslant 25$			B2
	$-\infty<\mathrm{f}(x)<25$ or $-\infty \leqslant \mathrm{f}(x)<25$			B1
	$[-\infty, 25]$ or ($-\infty, 25$]			B1
	$(-\infty, 25)$			B0
	Condone $\mathrm{f}(x)=\leqslant 25$			B2
	Condone $\mathrm{f}(x)=<25$			B1
	Condone $\mathrm{f}(x)=x \leqslant 25$			SC1
	$\mathrm{f}(x) \leqslant 25$ in working with list of integers on answer line			B1
	Only a list of integers			B0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

10(b)	$1 \leqslant g(x) \leqslant 5$ or $5 \geqslant g(x) \geqslant 1$	B2	B1 $1 \leqslant g(x)<5$ or $1<g(x) \leqslant 5$ or $1<\mathrm{g}(x)<5$ or $\mathrm{g}(x) \geqslant 1$ and $\mathrm{g}(x) \leqslant 5$ or $1 \leqslant g(x) \leqslant k$ where k is a constant >1 or $p \leqslant \mathrm{~g}(x) \leqslant 5$ where p is a constant <5 SC1 $1 \leqslant x \leqslant 5$	
	Additional Guidance			
	Condone $\mathrm{g}(x)$ replaced by eg y or g or $\mathrm{g} x$ or $\mathrm{f}(x)$ or f or $\mathrm{f} x$ or $5-x^{2}$ in B2 or B1 responses			
	Equivalent inequalities may be seen eg $5 \geqslant \mathrm{~g}(x)>1$			B1
	Only $\mathrm{g}(x) \geqslant 1$ given as the answer			B0
	Only $\mathrm{g}(x) \leqslant 5$ given as the answer			B0
	$1 \leqslant g(x) \leqslant 4$			B1
	$1 \leqslant \mathrm{~g}(x)<4$			B0
	$0 \leqslant \mathrm{~g}(x) \leqslant 5$			B1
	$0<\mathrm{g}(x) \leqslant 5$			B0
	Invalid statements do not score eg1 $1 \leqslant g(x) \geqslant 5$ eg2 $1 \geqslant g(x) \leqslant 5$ eg3 $6 \leqslant g(x) \leqslant 5$			$\begin{aligned} & \text { B0 } \\ & \text { B0 } \\ & \text { B0 } \end{aligned}$
	[1, 5]			B1
	$[1,5)$ or $(1,5]$ or $(1,5)$ or $1-5$ or $5-1$			B0
	$1 \leqslant g(x) \leqslant 5$ in working with list of integers on answer line			B1
	Only a list of integers			B0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

11	$x=-2$	B 1		
	Additional Guidance			

12	Alternative method 1		
	$\frac{1}{2} \times \frac{4}{3} \times \pi \times(6 a)^{3}$ or $\frac{2}{3} \times \pi \times 216 a^{3}$ or $144 \pi a^{3}$	M1	oe eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times\left(\frac{12 a}{2}\right)^{3}$ or $\frac{2}{3} \times \pi \times(6 a)^{3}$
	$a^{3}=\frac{486 \pi}{144 \pi}$ or $a^{3}=\frac{27}{8}$ or $a^{3}=486 \div\left(\frac{2}{3} \times 6^{3}\right)$ or $a^{3}=3.375$ or $\sqrt[3]{3.375}$	A1	oe equation of form $a^{3}=$ or calculation allow $(6 a)^{3}=729$ or $6 a=9$
	$\frac{3}{2}$ or $1 \frac{1}{2}$ or 1.5	A1	SC1 answer 0.75 oe or answer 1.19... or answer 4.95..

Mark scheme and Additional Guidance continue on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 12 \\ \text { cont } \end{gathered}$	Alternative method 2				
	$r^{3}=\frac{486 \pi}{\frac{2}{3} \pi}$ or $r^{3}=729$ or $\sqrt[3]{729}$ or 9	M1	oe equation of form $r^{3}=$ or calculation		
	$6 a=\sqrt[3]{\frac{486 \pi}{\frac{2}{3} \pi}}$ or $6 a=9$ or $9 \div 6$	A1	oe equation or calculation allow $(6 a)^{3}=729$		
	$\frac{3}{2}$ or $1 \frac{1}{2}$ or 1.5	A1	SC1 answer 0.75 oe or answer 1.19... or answer 4.95...		
	Additional Guidance				
	Allow recovery of missing brackets				
	Allow use of $\pi=[3.14,3.142]$				

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

13	$x\left(1-x^{2}\right)$ or $2 x(1+x)$ or $x(2+2 x)$ or $\frac{1-x^{2}}{2+2 x}$	M1	implied by 2nd M1 oe factorisation eg $-x\left(x^{2}-1\right)$	
	$\begin{aligned} & x(1+x)(1-x) \\ & \text { or } \frac{x\left(1-x^{2}\right)}{2 x(1+x)} \\ & \text { or } \frac{1-x^{2}}{2(1+x)} \\ & \text { or } \frac{(1+x)(1-x)}{2+2 x} \end{aligned}$	M1dep	implies M2 oe factorisation eg $-x(x+1)(x-1)$	
	$\begin{aligned} & \frac{x(1+x)(1-x)}{2 x(1+x)} \text { or } \frac{(1+x)(1-x)}{2(1+x)} \\ & \text { or } \frac{x(1-x)}{2 x} \end{aligned}$	M1dep	implies M3 oe factorisation $\text { eg } \frac{-x(x+1)(x-1)}{2 x(1+x)}$	
	$\frac{1-x}{2}$ with M3 seen	A1	oe simplest form eg $\frac{1}{2}(1-x)$ or $\frac{1}{2}-\frac{1}{2} x$ or $\frac{-x+1}{2}$	
	Additional Guidance			
	$\frac{x(1+x)(1-x)}{2 x(1+x)}$ or $\frac{(1+x)(1-x)}{2(1+x)}$ or $\frac{x(1-x)}{2 x}$ is sufficient working			M
	$2\left(x+x^{2}\right)$ with no further work			M
	$\frac{x-1}{-2}$ with M3 seen or $-\frac{1}{2}(x-1)$ with M3 seen or $\frac{-(x-1)}{2}$ with M3 seen			M3

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

15	Alternative method 1		
	$3 m p=3(2 p+1)+p+5$ or $(m=) \frac{3(2 p+1)}{3 p}+\frac{p+5}{3 p}$ or $\quad(m=) \frac{6 p+3+p+5}{3 p}$	M1	oe fractions eliminated or common denominator eg $(m=) \frac{3 p(2 p+1)}{3 p^{2}}+\frac{p(p+5)}{3 p^{2}}$ or $(m=) \frac{6 p^{2}+3 p+p^{2}+5 p}{3 p^{2}}$
	$3 m p=6 p+3+p+5$ or $3 m p=7 p+8$	M1dep	oe brackets expanded and fractions eliminated $\text { eg } 3 m p^{2}=7 p^{2}+8 p$ implies M2
	$3 m p-7 p=8$ or $\frac{8}{3 m-7}$ or $\frac{-8}{7-3 m}$	M1dep	oe terms collected eg $p(3 m-7)=8$ or $7 p-3 m p=-8$ implies M3
	$p=\frac{8}{3 m-7} \text { or } p=\frac{-8}{7-3 m}$	A1	$\text { oe eg } \frac{8}{3 m-7}=p$

Mark scheme and Additional Guidance continue on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 15 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$\begin{aligned} & (m=) \frac{3(2 p+1)}{3 p}+\frac{p+5}{3 p} \\ & \text { or }(m=) \frac{6 p+3+p+5}{3 p} \end{aligned}$	M1	oe common denominator eg $(m=) \frac{3 p(2 p+1)}{3 p^{2}}+\frac{p(p+5)}{3 p^{2}}$ or $(m=) \frac{6 p^{2}+3 p+p^{2}+5 p}{3 p^{2}}$	
	$\begin{aligned} & m=\frac{7 p+8}{3 p} \\ & \text { and } m=\frac{7}{3}+\frac{8}{3 p} \\ & \text { and } m-\frac{7}{3}=\frac{8}{3 p} \end{aligned}$	M1dep	simplifies numerator and isolates term in p eg $m=\frac{7 p^{2}+8 p}{3 p^{2}}$ and $m=\frac{7}{3}+\frac{8}{3 p}$ and $m-\frac{7}{3}=\frac{8}{3 p}$ implies M2	
	$\frac{3 m-7}{3}=\frac{8}{3 p}$	M1dep	converts $m-\frac{7}{3}$ to a single fraction implies M3	
	$p=\frac{8}{3 m-7}$ or $p=\frac{-8}{7-3 m}$	A1	$\text { oe eg } \frac{8}{3 m-7}=p$	
	Additional Guidance			
	$p=\frac{8}{3 m-7}$ in working but $\frac{8}{3 m-7}$ on answer line			M3A1
	Allow recovery of missing brackets			
	$p=\frac{8}{3 m-7}$ followed by incorrect further work			M3A0
	Allow equivalences for A1 eg $p=\frac{\frac{8}{3}}{\frac{3 m-7}{3}}$			M3A1
	Do not regard eg $3 m(p)=7 p+8$ as having unexpanded brackets			M1M1dep

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

16

$\frac{8-5}{2}=\sqrt{1-a} \text { or } \frac{3}{2}=\sqrt{1-a}$ or $3^{2}=2^{2}(1-a) \text { or } 9=4(1-a)$	M1		
$1-a=\left(\frac{3}{2}\right)^{2}$ or $1-a=\frac{9}{4}$ or $9=4-4 a$ or $\frac{4-9}{4}$	M1dep	oe equation or calculation eg $1-a=\left(\frac{8-5}{2}\right)^{2}$ or $1-a=2.25$ or $\frac{9-4}{-4}$ implies M2	
$-\frac{5}{4}$ or -1.25 or $-1 \frac{1}{4}$	A1		
Additional Guidance			
$3=2 \sqrt{1-a}$			M0
Allow recovery of missing brackets			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	$x^{2}+3 x+x+3$ with three terms correct or $x^{2}+4 x+k$ where k is a non-zero constant	M1	oe expansion attempt of one pair of brackets eg1 $x^{2}+4 x+3 x+12$ with three terms correct or $x^{2}+7 x+k$ where k is a non-zero constant eg2 $x^{2}+4 x+x+4$ with three terms correct or $x^{2}+5 x+k$ where k is a non-zero constant
17	$\begin{aligned} & x^{3}+3 x^{2}+x^{2}+3 x \\ & \text { or } x^{3}+4 x^{2}+3 x \\ & \text { or } 4 x^{2}+12 x+4 x+12 \\ & \text { or } 4 x^{2}+16 x+12 \end{aligned}$	M1dep	attempt at a full expansion with correct multiplication of their 3 or 4 terms by one of the terms in the remaining bracket oe eg $x^{3}+4 x^{2}+3 x^{2}+12 x \text { or } x^{3}+7 x^{2}+12 x$ or $x^{2}+4 x+3 x+12$ or $x^{2}+7 x+12$ ($x^{2}+7 x+12$ must be from an attempt at a full expansion) or $x^{3}+4 x^{2}+x^{2}+4 x \text { or } x^{3}+5 x^{2}+4 x$ or $3 x^{2}+12 x+3 x+12$ or $3 x^{2}+15 x+12$
	$x^{3}+8 x^{2}+19 x+12$	A1	fully correct expansion allow if terms not collected eg $x^{3}+3 x^{2}+x^{2}+3 x+4 x^{2}+12 x+4 x+12$ or $x^{3}+4 x^{2}+3 x+4 x^{2}+16 x+12$
	$x^{2}+8 x+12$	A1ft	ft M2A0 full simplification of their $\left(x^{3}+8 x^{2}+19 x+12\right)-x^{3}-7 x^{2}-11 x$ their $\left(x^{3}+8 x^{2}+19 x+12\right)$ must be a cubic
	$x^{2}+8 x+12$ and $(x+6)(x+2) \text { or }(x+2)(x+6)$	A1	oe product of brackets

Additional Guidance is on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 17 \\ \text { cont } \end{gathered}$	Additional Guidance	
	1st M1 Do not allow omissions or extras eg1 $x^{2}+3 x+3$ $\text { eg2 } x^{2}+3 x+x+3+x^{2}$	$\begin{aligned} & \text { M0 } \\ & \text { M0 } \end{aligned}$
	For the first 2 marks terms may be seen in a grid	
	If 1 st A 1 has been awarded with terms not collected, A1ft can still be awarded using their simplified cubic $\begin{aligned} & \text { eg } x^{3}+4 x^{2}+3 x+4 x^{2}+16 x+12 \\ & =x^{3}+8 x^{2}+18 x+12 \\ & x^{3}+8 x^{2}+18 x+12-x^{3}-7 x^{2}-11 x \\ & =x^{2}+7 x+12 \end{aligned}$	M1M1A1 A1ftA0
	First A1 may be seen embedded eg $x^{3}+8 x^{2}+19 x+12-x^{3}+7 x^{2}-11 x$	M1M1A1
	If an attempt at the expansion of all three brackets in one go is made it must be fully correct to gain M2A1, otherwise MOMOAO $\text { eg } x^{2}+3 x+x+3+x^{2}+4 x$	MOM0A0
	Allow recovery of missing brackets when subtracting $x^{3}+7 x^{2}+11 x$ from their cubic	
	For final A1 allow $x^{2}+8 x+12$ and $a=6 \quad b=2$ or $x^{2}+8 x+12$ and $a=2 b=6$	
	Ignore equating to zero and/or any 'solving' of an equation	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

18	Alternative method 1		
	$x-5=\frac{k}{2}$ or $x-5=-\frac{k}{2}$ or $2(x-5)=k$ or $2 x-10=k$ or $2(x-5)=-k$ or $2 x-10=-k$	M1	oe linear equation eg $x-5=\sqrt{\frac{k^{2}}{4}}$ or $x=\frac{k}{2}+5$ or $\sqrt{4}(x-5)=\sqrt{k^{2}}$
	$x-5=\frac{k}{2} \text { and } x-5=-\frac{k}{2}$ or $2(x-5)=k$ and $2(x-5)=-k$ or $2 x-10=k \text { and } 2 x-10=-k$	A1	oe eg $x-5= \pm \frac{k}{2}$ square root(s) must be processed implied by final A1
	$\frac{k}{2}+5 \text { and }-\frac{k}{2}+5$	A1	oe simplest form eg $\frac{10+k}{2}$ and $\frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5 \pm 0.5 k$
	Alternative method 2		
	$4 x^{2}-40 x+100-k^{2}(=0)$	M1	expands and collects terms
	$\frac{--40 \pm \sqrt{(-40)^{2}-4 \times 4 \times\left(100-k^{2}\right)}}{2 \times 4}$	A1	oe eg $\frac{40 \pm \sqrt{16 k^{2}}}{8}$ or $\frac{40 \pm 4 k}{8}$ implied by final A1
	$\frac{k}{2}+5 \text { and }-\frac{k}{2}+5$	A1	oe simplest form eg $\frac{10+k}{2}$ and $\frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5 \pm 0.5 k$
		iona	idance
	Allow recovery of missing brackets		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Q	Answer	Mark	Comments
19(b)	Alternative method 1		
	$0.5 \times 4 x \times 3 x$ or $6 x^{2}$	M1	oe may be seen on the diagram
	$\begin{aligned} & (6.5 x)^{2}-(2.5 x)^{2} \\ & \text { or } 42.25 x^{2}-6.25 x^{2} \\ & \text { or } 36 x^{2} \end{aligned}$	M1	$\text { oe eg }(6.5 x)^{2}-\left(\frac{5 x}{2}\right)^{2}$
	$\sqrt{\text { their } 36 x^{2}}$ or $6 x$	M1dep	dep on 2nd M1 may be seen on the diagram
	$0.5 \times 5 x \times$ their $6 x$ or $15 x^{2}$	M1dep	oe dep on 2nd and 3rd M1
	$21 x^{2}$	A1	allow $p=21$ if areas $6 x^{2}$ and $15 x^{2}$ seen
	Alternative method 2		
	$0.5 \times 4 x \times 3 x$ or $6 x^{2}$	M1	oe may be seen on the diagram
	$\begin{aligned} & \cos A C D=\frac{2.5 x}{6.5 x} \\ & \text { or } \cos A C D=\frac{5}{13} \end{aligned}$	M1	oe
	$\cos ^{-1} \frac{2.5 x}{6.5 x}$ or $67(.3 \ldots$) or 67.4	M1dep	oe eg $\cos ^{-1} \frac{(6.5 x)^{2}+(5 x)^{2}-(6.5 x)^{2}}{2 \times 6.5 x \times 5 x}$ dep on 2nd M1
	$0.5 \times 5 x \times 6.5 x \times \text { sin their } 67(.3 \ldots)$ or $15 x^{2}$	M1dep	oe dep on 2nd and 3rd M1
	$21 x^{2}$	A1	allow $p=21$ if areas $6 x^{2}$ and $15 x^{2}$ seen

Mark scheme and Additional Guidance continue on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19(b)cont	Alternative method 3			
	$0.5 \times 4 x \times 3 x$ or $6 x^{2}$	M1	oe may be seen on the diagram	
	$\begin{aligned} & (5 x)^{2}=(6.5 x)^{2}+(6.5 x)^{2} \\ & -2 \times 6.5 x \times 6.5 x \times \cos D \end{aligned}$	M1	oe	
	$\begin{aligned} & \cos ^{-1} \frac{(6.5 x)^{2}+(6.5 x)^{2}-(5 x)^{2}}{2 \times 6.5 x \times 6.5 x} \\ & \text { or } \cos ^{-1} \frac{119}{169} \\ & \text { or } \\ & 45(.2 \ldots) \end{aligned}$	M1dep	oe dep on 2nd M1	
	$0.5 \times 6.5 x \times 6.5 x \times \sin$ their $45(.2 \ldots)$ or $15 x^{2}$	M1dep	oe dep on 2nd and 3rd M1	
	$21 x^{2}$	A1	allow $p=21$ if areas $6 x^{2}$ and $15 x^{2}$ seen	
	Additional Guidance			
	Allow recovery of algebra eg1 $0.5 \times 4 \times 3=6$ is 1 st M0 but if recovered to $6 x^{2}$ scores 1 st M1 eg2 Alt $1 \sqrt{42.25-6.25}=6$ is 2 nd M0 and 3rd M0 but if recovered to $6 x$ scores 2nd M1 and 3rd M1			
	Do not allow final mark if an incorrect area is seen eg do not allow answer $21 x^{2}$ if their two areas are $6 x^{2}$ and $15 x$			
	Answer $21 x^{2}$ with no incorrect working eg fully correct working with numbers and final answer $21 x^{2}$			5 marks
	Allow recovery of missing brackets			
	Choose the scheme that favours the student			

Mark scheme and Additional Guidance continue on the next three pages

\mathbf{Q}	Answer	Mark	Comments

20(a) cont	Alternative method 3 Working out angle DCF not using angle at centre		
	Full method leading to angle $D C F=2 x$	M1	$\begin{aligned} & \text { eg } \\ & \text { angle } C F E=x \\ & \text { and } \\ & \text { angle } D C F=2 x \end{aligned}$
	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and exterior angle (of triangle is sum of interior opposite angles)
	Full method leading to angle $B A D=2 x$ and full reasoning for their method	A1	```must see M1 eg angle BCD = 180-2x and angle BAD = 2x and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)```

Mark scheme and Additional Guidance continue on the next two pages

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

20(a) cont	Alternative method 4		
	Full method leading to angle $D F C=90-x$ and angle $A B C=90-x$	M1	eg angle CFE $=x$ and angle DFE $=90$ and angle $D F C=90-x$ and angle $C D F=90-x$ and angle $A D C=90+x$ and angle $A B C=90-x$
	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and (angle in a) semicircle (is 90) and (sum of) angles in a triangle (is 180) and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)
	angle $B A D=2 x$ and (sum of) angles in a triangle (is 180)	A1	must see M1

Additional Guidance is on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$20(a)$ cont	Additional Guidance	
	It is possible to score M1A1A0 or M1A0A1	
	Do not award any marks from angles on the diagram	
	Angles must be stated unambiguously eg condone angle B but do not condone angle D	
	'angle' may be missing or replaced by a symbol - mark intention	
	angle CFE may be seen as angle EFC or angle BFE etc	
	For (base angles of) isosceles (triangle are equal) allow radii (are equal)	
	For (sum of) angles in a triangle (is 180) allow triangle is 180	
	Use judgement when considering wording of reasons and allow abbreviations	
	Alt 2 Final A1 reason may be exterior angle of cyclic quadrilateral (equals interior opposite angle)	
	Choose the scheme that favours the student	
	Ignore angles that are not needed for their scheme even if incorrect	
	Allow recovery of missing brackets	
	Starting with angle $B A D=2 x$	MOAOAO

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

20(b)	30	B2	B1 correct equ eg $90+2 x+x$ or $90-x=2 x$ or $3 x=90$ or $6 x=180$ or $90 \div 3$	ulation
	Additional Guidance			
	Ignore any expressions for angles and any other calculated angles			
	Ignore any reasons			

\mathbf{Q}	Answer	Mark	Comments

$8^{2}+12^{2}$ or $64+144$ or 208 or $8^{2}+12^{2}+15^{2}$ or $64+144+225$ or 433	M1	$H C^{2}$ or $C E^{2}$ implied by 2nd M1	
$\sqrt{8^{2}+12^{2}}$ or $\sqrt{208}$ or $4 \sqrt{13}$ or 14.4... or $\sqrt{8^{2}+12^{2}+15^{2}} \text { or } \sqrt{433}$ or 20.8...	M1dep	oe may be on diagram fully correct trigonometry me $14.4 \ldots$ or $20.8 \ldots$ can score eg $8 \div \sin \left(\tan ^{-1} \frac{8}{12}\right)$ or $8 \div \sin \left(\tan ^{-1} \frac{8}{\sqrt{12^{2}+15^{2}}}\right.$	eading to
$\begin{aligned} & \tan x=\frac{15}{\sqrt{8^{2}+12^{2}}} \\ & \text { or } \cos x=\frac{\sqrt{8^{2}+12^{2}}}{\sqrt{8^{2}+12^{2}+15^{2}}} \\ & \text { or } \sin x=\frac{15}{\sqrt{8^{2}+12^{2}+15^{2}}} \end{aligned}$	M1dep	oe eg $\tan x=[1.04,1.042]$ or or $\cos x=[0.69,0.6934]$ or $\sin x=[0.72,0.7212]$ or $90-\tan ^{-1} \frac{\sqrt{8^{2}+12^{2}}}{15}$ dep on M2 any letter	
46(.1...)	A1		
Additional Guidance			
3rd M1 If using sine rule or cosine rule, must be in the form $\cos x=$ or $\sin x=$ eg $\cos x=\frac{20.8^{2}+14.4^{2}-15^{2}}{2 \times 20.8 \times 14.4} \quad\left(\mathrm{oe} \mathrm{eg} \cos ^{-1}[0.69,0.6934]\right)$			
3rd M1 Condone tan $=\frac{15}{\sqrt{8^{2}+12^{2}}}$ etc			M3
Allow the first 2 M marks even if not subsequently used			
Allow recovery of missing brackets			

\mathbf{Q}	Answer	Mark	Comments

22(a)	Alternative method 1			
	$2 \sin ^{2} x-1+1-\sin ^{2} x$ or $2 \sin ^{2} x-\left(\sin ^{2} x+\cos ^{2} x\right)+\cos ^{2} x$ or $2 \sin ^{2} x-\sin ^{2} x-\cos ^{2} x+\cos ^{2} x$ or $2 \sin ^{2} x-\sin ^{2} x$ or $\sin ^{2} x-\cos ^{2} x+\cos ^{2} x$ or $1+\sin ^{2} x-1$		M1	use of $\sin ^{2} x+\cos ^{2} x=1$ in numerator ignore any denominator
	$\frac{\sin ^{2} x}{\sin x \cos x}$ with M1 seen	$\begin{aligned} & \frac{\sin ^{2} x}{\tan x \cos ^{2} x} \\ & \text { with M1 seen } \end{aligned}$	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan ^{2} x}{\tan x}$
	$\frac{\sin x}{\cos x}$ and $\tan x$ with M2 seen	$\frac{\tan ^{2} x}{\tan x}$ and $\tan x$ with M2 seen	A1	SC3 equates given expression to $\tan x$ and cross multiplies to show equivalence with full working shown

Mark scheme and Additional Guidance continue on the next two pages

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{aligned} & \text { 22(a) } \\ & \text { cont } \end{aligned}$	Alternative method 2		
	$2\left(1-\cos ^{2} x\right)-1+\cos ^{2} x$ or $2-2 \cos ^{2} x-1+\cos ^{2} x$	M1	use of $\sin ^{2} x+\cos ^{2} x=1$ in numerator ignore any denominator
	$\frac{1-\cos ^{2} x}{\sin x \cos x}$ $\frac{1-\cos ^{2} x}{\sin x \cos x}$ and and $\frac{\sin ^{2} x}{\sin x \cos x}$ $\frac{\sin ^{2} x}{\tan x \cos ^{2} x}$ with M1 seen with M1 seen	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan ^{2} x}{\tan x}$
	$\begin{array}{l\|l} \frac{\sin x}{\cos x} \text { and } \tan x & \frac{\tan ^{2} x}{\tan x} \text { and } \tan x \\ \text { with M2 seen } & \text { with M2 seen } \end{array}$	A1	SC3 equates given expression to $\tan x$ and cross multiplies to show equivalence with full working shown
	Alternative method 3		
	$\frac{2 \sin x}{\cos x}-\frac{\sin ^{2} x}{\sin x \cos x}$	M1	from $\frac{2 \sin ^{2} x}{\sin x \cos x}-\frac{1-\cos ^{2} x}{\sin x \cos x}$
	$2 \tan x-\frac{\sin ^{2} x}{\sin x \cos x}$ or $\frac{2 \sin x}{\cos x}-\frac{\sin x}{\cos x}$ with M1 seen	M1dep	simplification to one step from $2 \tan x-\tan x$
	$2 \tan x-\tan x$ and $\tan x$ with M2 seen	A1	SC3 equates given expression to $\tan x$ and cross multiplies to show equivalence with full working shown

Additional Guidance is on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

22(a) cont	Additional Guidance	
	Equating given expression to tan x and cross multiplying can score SC3 or M1M0A0 eg1 Alt 1 $\begin{aligned} & \frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=\tan x \\ & 2 \sin ^{2} x-1+\cos ^{2} x=\tan x \sin x \cos x \\ & 2 \sin ^{2} x-1+1-\sin ^{2} x=\tan x \sin x \cos x \quad \text { (scores M1 here for LHS) } \\ & \text { eg2 } \\ & \frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=\tan x \\ & 2 \sin ^{2} x-1+\cos ^{2} x=\tan x \sin x \cos x \\ & 2 \sin ^{2} x-1+1-\sin ^{2} x=\tan x \sin x \cos x \\ & \sin ^{2} x=\tan x \sin x \cos x \\ & \sin ^{2} x=\frac{\sin x}{\cos x} \sin x \cos x \\ & \sin ^{2} x=\sin 2 \end{aligned}$	M1M0A0 SC3
	Use of $\sin x=\frac{\text { opp }}{\text { hyp }}$ etc	MOMOAO
	Allow \sin or s for $\sin x$ etc	
	Condone $\sin x^{2}$ for $\sin ^{2} x$ etc	
	Allow any letter for x	
	Alts 1 and 2 For A1 $\frac{\sin x}{\cos x}$ is implied by $\frac{\sin ^{2} x}{\sin x \cos x}$ with cancelling shown	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

22(b)	135 and 315 with no other solutions [0,360]	B2	B1 135 with no other solutions $[0,360]$ or 315 with no other solutions [0,360] SC1 135 and 315 with one other solution [0, 360]	
	Additional Guidance			
	Mark the answer line unless blank eg 135 and 315 in working with 135 on answer line			B
	-45 and 135 and 315			B
	-45 and 135			B
	Ignore incorrect solutions outside the range [0, 360] eg 135 and 315 and -90			B
	135 and 225 and 315			SC
	Both answers embedded ie tan $135 \tan 315$			B
	0 and 135 and 225 and 315			B
	45 and 135			B
	225 and 315			B

23(a)	$(1,-3)$	B1		
	Additional Guidance			B1
	Mark intention eg condone $1,-3$			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

23(c)	Alternative method 1 Using equation $P R$		
	$\frac{-7-\text { their }-3}{4-\text { their } 1}$ or $-\frac{4}{3}$	M1	oe grad $P C$ their -3 and their 1 from (a)
	$-1 \div$ their $-\frac{4}{3}$ or $\frac{3}{4}$	M1	oe grad $P R$ their $-\frac{4}{3}$ must be a value (gradient $P R=$) $\frac{3}{4}$ is M2
	$2--7=$ their $\frac{3}{4}(x-4)$	M1dep	oe equation $P R$ with $y=2$ substituted eg $2=\frac{3}{4} x-10$ dep on 2nd M1
	16	A1ft	only ft their -3 and their 1 from (a)
	Alternative method 2 Using $R C^{2}=C P^{2}+P R^{2}$ or $P R^{2}=Q R^{2}$ with $R(x, 2)$		
	$\begin{aligned} & (x-\text { their } 1)^{2}+(2-\text { their }-3)^{2} \\ & =(2-\text { their }-3)^{2}+(x-4)^{2}+(2--7)^{2} \end{aligned}$	M1	oe eg $(x-1)^{2}=(x-4)^{2}+(2--7)^{2}$ their -3 and their 1 from (a)
	$\begin{aligned} & x^{2}-2 x+1+25 \\ & =25+x^{2}-8 x+16+81 \end{aligned}$	M1dep	oe brackets expanded
	$96=6 x$ or $96 \div 6$	M1dep	oe linear equation or calculation dep on M2
	16	A1ft	only ft their -3 and their 1 from (a)

Mark scheme and Additional Guidance continue on the next three pages

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{aligned} & \text { 23(c) } \\ & \text { cont } \end{aligned}$	Alternative method 3 Using equation CR		
	$\frac{-7-2}{4-\text { their } 1}$ or -3	M1	oe grad $P Q$ their 1 from (a)
	$-1 \div$ their -3 or $\frac{1}{3}$	M1	oe grad $C R$ their -3 must be a value (gradient $C R=$) $\frac{1}{3}$ is M2
	$2-$ their $-3=$ their $\frac{1}{3}(x-$ their 1$)$	M1dep	oe equation $C R$ with $y=2$ substituted eg $2=\frac{1}{3} x-\frac{10}{3}$ dep on 2nd M1
	16	A1ft	only ft their - 3 and their 1 from (a)
	Alternative method 4 Using equation $M R$ where M is the midpoint of $P Q$		
	$\frac{-7-2}{4-\text { their } 1}$ or -3	M1	oe $\operatorname{grad} P Q$ their 1 from (a)
	$-1 \div$ their -3 or $\frac{1}{3}$	M1	oe grad $M R$ their -3 must be a value (gradient $M R=$) $\frac{1}{3}$ is M2
	$\left(\frac{4+\text { their } 1}{2}, \frac{-7+2}{2}\right) \text { or }(2.5,-2.5)$ and $2-\text { their }-2.5=\text { their } \frac{1}{3}(x-\text { their } 2.5)$	M1dep	oe midpoint of $P Q$ and equation $M R$ with $y=2$ substituted eg $2=\frac{1}{3} x-\frac{10}{3}$ dep on 2nd M1
	16	A1ft	only ft their 1 from (a)

Mark scheme and Additional Guidance continue on the next two pages

\mathbf{Q}	Answer	Mark	Comments

$\begin{aligned} & \text { 23(c) } \\ & \text { cont } \end{aligned}$	Alternative method 5 Using equation MC where M is the midpoint of $P Q$		
	$\left(\frac{4+\text { their } 1}{2}, \frac{-7+2}{2}\right)$ or $(2.5,-2.5)$	M1	oe midpoint of $P Q$ their 1 from (a)
	$\frac{\text { their }-3-\text { their }-2.5}{\text { their } 1 \text { - their } 2.5}$ or $\frac{1}{3}$	M1dep	oe grad MC
	$2-$ their $-3=$ their $\frac{1}{3}(x-$ their 1$)$ or $2-$ their $-2.5=$ their $\frac{1}{3}(x-$ their 2.5$)$	M1dep	oe equation $M C$ with $y=2$ substituted eg $2=\frac{1}{3} x-\frac{10}{3}$ dep on M2
	16	A1ft	only ft their -3 and their 1 from (a)
	Alternative method 6 Using trigo	metry w	re M is the midpoint of $P Q$
	$(Q M=) \frac{1}{2} \sqrt{(4-\text { their } 1)^{2}+(-7-2)^{2}}$ or $\frac{1}{2} \sqrt{90}$ or $4.74 \ldots$	M1	
	$\sin ^{-1}\left(\frac{\text { their } 4.74 \ldots}{5}\right)$ or (angle $Q C M=$) $71.5 \ldots$ or 71.6	M1dep	oe angle $Q C M$
	$\tan (\text { their } 71.5 \ldots)=\frac{x-\text { their } 1}{5}$	M1dep	using triangle $Q C R$
	16	A1ft	only ft their 1 from (a)

Additional Guidance is on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$(-c)^{3}-10(-c)-c(=0)$		oe
or		
$-c^{3}+10 c-c(=0)$		
or		
$-c^{3}+9 c(=0)$	M1	
$c\left(9-c^{2}\right)(=0)$ or $c(3+c)(3-c) \quad(=0)$ or $c^{2}=9$	M1dep	oe factorised expression or quadratic equation
3 with no other value(s)	A1	SC2 answer 3 with one or both of -3 and 0 and no other value

Alternative method 2

$(x+c)\left(x^{2}-c x-1\right)$	M1	
$-1-c^{2}=-10$	M1dep	oe quadratic equation
3 with no other value(s) A1	SC2 answer 3 with one or both of -3 and 0 and no other value	
Additional Guidance		
$(-3)^{3}-10(-3)-3=0$ and Answer 3 (no part marks)	M2A1	
$(-3)^{3}-10(-3)--3=0$ and Answer 3	Zero	
$3^{3}-10(3)--3=0 \quad$ and Answer 3	Zero	
Answer 3 with no incorrect working	M2A1	
Allow recovery of missing brackets		

Q	Answer	Mark	Comments
26	Alternative method 1		
	$(x+3)^{2} \ldots$	M1	
	$(x+3)^{2}-3^{2}-a$ or $(x+3)^{2}-3^{2} \geqslant a$ or $(x+3)^{2} \geqslant a+3^{2}$	M1dep	oe expression or inequality $\text { eg }(x+3)^{2} \geqslant 9+a$ allow \geqslant to be any inequality symbol or $=$ eg allow $(x+3)^{2}-9=a$ implies M2
	$-3^{2}-a \geqslant 0$ or $-3^{2}-a>0$	M1dep	oe inequality eg $-9-a \geqslant 0$ or $-9-a>0$ or $a<-9$ implies M3
	$a \leqslant-9$ or $-9 \geqslant a$	A1	SC1 $x^{2}+6 x-a \geqslant 0$ oe inequality (may be seen in working lines)
	Alternative method 2		
	$2 x+6=0$	M1	must have $=0$
	(minimum at) $x=-3$	M1dep	implies M2 $x=-3$ must be the only value or be clearly chosen
	$(-3)^{2}+6 \times(-3)-a \geqslant 0$ or $(-3)^{2}+6 \times(-3)-a>0$	M1dep	oe inequality eg $9-18-a \geqslant 0$ or $9-18-a>0$ or $a<-9$ implies M3
	$a \leqslant-9$ or $-9 \geqslant a$	A1	SC1 $x^{2}+6 x-a \geqslant 0$ oe inequality (may be seen in working lines)

Mark scheme and Additional Guidance continue on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Alternative method 3			
	$6^{2}-4 \times 1 \times-a$	M1	$b^{2}-4 a c$ must be selected if seen in quadratic formula	
	$6^{2}-4 \times 1 \times-a \leqslant 0$ or $6^{2}-4 \times 1 \times-a<0$	M1dep	oe inequality implies M2	
	$36+4 a \leqslant 0$ or $36+4 a<0$	M1dep	oe inequality eg $4 a \leqslant-36$ implies M3	
	$a \leqslant-9$ or $-9 \geqslant a$	A1	SC1 $x^{2}+6 x-a \geqslant 0$ oe inequality (may be seen in working lines)	
	Additional Guidance			
	Alt 1 2nd M1 Any inequality symbol or = allowed 3rd M1 Only the inequality symbols shown are allowed (do not allow =)			
	Allow $(x+3)(x+3)$ for $(x+3)^{2}$			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

Shows substitution of a value of $x<-2 \text { into } \frac{\mathrm{d} y}{\mathrm{~d} x}$ and shows substitution of a value of $x>-2 \text { into } \frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	eg $\begin{aligned} & (-3+2)^{6}+(-3+2)^{4} \\ & \text { and }(-1+2)^{6}+(-1+2)^{4} \end{aligned}$ allow $(-1)^{6}+(-1)^{4}$ with $x=-3$ stated and $(1)^{6}+(1)^{4}$ with $x=-1$ stated
Evaluates both correctly or states that each is positive with M1 seen	M1dep	eg $(-3+2)^{6}+(-3+2)^{4}=2$ and $(-1+2)^{6}+(-1+2)^{4}=2$ allow $(-1)^{6}+(-1)^{4}=2$ with $x=-3$ stated and $(1)^{6}+(1)^{4}=2$ with $x=-1$ stated
Statement with M2 seen	A1	eg either side of $P \frac{\mathrm{~d} y}{\mathrm{~d} x}>0$ with M 2 seen SC2 states two values of x (one <-2 and one >-2) and shows the correct value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for each and makes a statement SC1 states two values of x (one <-2 and one >-2) and shows the correct value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for each

\mathbf{Q}	Answer	Mark	Comments

Alternative method 2

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}x<-2 \text { and }(-)^{6}+(-)^{4} \\ \text { and } \\ x>-2 \text { and }(+)^{6}+(+)^{4}\end{array} & \text { M1 } & \begin{array}{l}\text { allow without brackets } \\ \text { allow less than for }<\text { etc }\end{array} \\ \hline \begin{array}{l}x<-2 \text { and }(-)^{6}+(-)^{4}>0 \\ \text { and } \\ x>-2 \text { and }(+)^{6}+(+)^{4}>0\end{array} & \text { M1dep } & \begin{array}{l}\text { allow without brackets } \\ \text { allow }=+ \text { for }>0\end{array} \\ \hline \text { Statement with M2 seen } & \text { A1 } & \begin{array}{l}\text { eg either side of } P \frac{\mathrm{~d} y}{\mathrm{~d} x}>0 \text { with M2 seen } \\ \text { (one }<-2 \text { and one }>-2 \text {) } \\ \text { and shows the correct value of } \frac{\mathrm{d} y}{\mathrm{~d} x} \\ \text { each and makes a statement }\end{array} \\ \text { for } \\ \text { SC1 states two values of } x \\ \text { (one }<-2 \text { and one }>-2 \text {) } \\ \text { and shows the correct value of } \frac{\mathrm{d} y}{\mathrm{~d} x} \\ \text { each for }\end{array}\right]$

Additional Guidance is on the next two pages

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Additional Guidance				
For A1 a clear statement is needed after M2 scored				
Examples of acceptable statements with M2 seen eg1 For $x<-2$ gradient is + and for $x>-2$ gradient is + eg2 To the left of $P m>0$ To the right of $P m>0$ eg3 (When both of their substitutions correctly evaluate to the same value) They are the same positive value eg4 Both gradients are the same sign eg5 m is + both times eg6 Gradient is always positive (apart from at P) eg7 Function (or curve) is increasing (either side of P)				
Allow a statement to be made using a diagram with M2 seen eg accept for eg2 above or				
Allow a statement to be made using a table with M2 seen eg accept for eg1 above				
When both of their substitutions correctly evaluate to the same positive value condone for the statement with M2 seen Gradients are the same (implies both positive)				
Do not accept for the statement eg1 Gradient is increasing eg2 m is positive eg3 Gradient is positive eg4 P is a point of inflection				

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

