

LEVEL 2 CERTIFICATE Further Mathematics

Paper 2 8360/2 Calculator Mark scheme

8360 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
М dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ое	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1(a)	$\frac{3-5\times20}{2} \text{ or } \frac{3-100}{2}$ or $(-)\frac{97}{2} \text{ or } (-)48.5$ or $\frac{3-5\times8}{2} \text{ or } \frac{3-40}{2}$ or $(-)\frac{37}{2} \text{ or } (-)18.5$ or $12 \times (-)\frac{5}{2}$	M1	0e
	(–)30	A1	Accept if both 30 and –30 are seen
	Additional Guidance		

	$-\frac{3}{2}$ or $-1\frac{1}{2}$ or -1.5	B1	oe	
	Ad	ditional G	uidance	
	Condone $\frac{3}{-2}$ or $n \to -1.5$ or $-1\frac{1}{2} \to \infty$			B1
1(b)	$-\frac{3n}{2n}$	B1		
	$-\frac{3n}{2n}$ not processed			B0
	$\frac{3}{0-2}$ not processed	B0		
	-1.5 <i>n</i>			B0

	$\begin{pmatrix} 13 & -2 \\ 6 & 1 \end{pmatrix}$	B2	B1 13 or –2 or 6 or 1 in correct position in a 2 b	oy 2 matrix	
	Additional Guidance				
2(a)	Condone missing brackets for B2 or				
	Brackets may be square or curly etc				
	Ignore commas and fraction lines				
	$\begin{pmatrix} 13 & -2 \\ 6 & 1 \end{pmatrix}$ followed by further work			B1	

	5k = 11 - 3k or $2k = 11 - 6kor 11 - 3k = \frac{5}{2}(11 - 6k)or 8k = 11$	M1	oe Any one correct equation	
	$\frac{11}{8}$ or $1\frac{3}{8}$ or 1.375 with no incorrect equation seen	A1	oe	
	Ade			
2(b)	$\binom{5k}{2k} = \binom{11-3k}{11-6k}$ with no further corre	MO		
	Ignore subsequent attempt to conver	M1A1		
	Ignore subsequent attempt to convert decimal	M1A1		
	Ignore subsequent rounding or truncation of 1.375			M1A1
	Answer only 1.37 or 1.38 or 1.4			MO
	T & I is 2 or zero			

	Valid explanation	B1 eg Number of columns of B does not equal number of rows of A		
	Ad	ditional G	uidance	
	'2 by 1' (or '2 × 1') matrix means 2 ro	ws and 1 o	column	
	'First matrix' means B and 'second m	atrix' mea	ns A	
	B columns ≠ A rows			B1
	B rows ≠ A columns			B0
	B columns ≠ A columns			B0
	B rows ≠ A rows			B0
	Number of rows in second matrix car columns in first matrix	nnot be mo	pre than number of	B1
	B has 1 column, A has 2 rows			B1
	A should only have 1 row			B1
2(c)	A has too many rows			B1
	B only has one column			B1
	B needs another column			B1
	It is a 2 x 1 multiplied by a 2 \times 2			B1
	There's nothing to multiply the 3 by			B1
	It is a 2 x 2 multiplied by 2 × 1			B0
	It is a 1 by 2 multiplied by a 2 by 2			B0
	B values can't multiply with all the A	values		B0
	They are not compatible			B0
	Because the dimensions of A and B are different			B0
	Can't work it out this way round			B0
	Can work out AB but not BA			B0
	B has to be a 2 by 2 matrix			B0

3(a)	3 (×) 455 or 5 (×) 273 or 7 (×) 195 or 13 (×) 105 or 15 (×) 91 or 21 (×) 65 or 35 (×) 39 or 3 (×) 5 (×) 7 (×) 13	M1	oe eg 1365 ÷ 5 = 273 Any order Must be integers May be seen in a factor to division	ree or repeated
	3 5 91 or 3 7 65 or 3 13 35 or 5 7 39 or 5 13 21 or 7 13 15	A1	Any order Must be integers	
	Additional Guidance			
	Correct answer can be implied by working lines			
	eg 3 (x) 5 (x) 91 with blank answer line			M1A1
	Answer line correct			M1A1
	Allow inclusion of 1 for M1 eg 1 (×) 3 (×) 455			M1

3(b)	<i>b</i> (<i>a</i> − 11) or − <i>b</i> (11 − <i>a</i>)	M1	Implied by square numbe eg1 4(36 – 11) eg2 9(16 – 11)	ers > 1 used
	a = 36 and $b =$ square number > 1 with working for M1 seen	A1	Must be in correct order Allow unprocessed squar eg $a = 6^2$ and $b = 5^2$ SC1 $a = 36$ and $b =$ squar without working for M1 se	res are number > 1 een
	Ade			
	b(a - 11) = 0 or $b(a - 11)$ with further work			M1
	Answer line takes precedence over working lines			
	Embedded answer eg 81(36 – 11)			M1A0

	Alternative method 1				
	$\frac{a+4}{2} = 3a$ or $3a - a = 4 - 3a$ or $a + \frac{4-a}{2} = 3a$ or $4 - \frac{4-a}{2} = 3a$ or $4 - a = 2(3a - a)$	M1	Oe		
	6a - a = 4 or $3a - a + 3a = 4$ or $2a - a - 6a = -4$ or $8 - 4 = 6a - a$ or $4 = 4a + a$ or $5a = 4$	M1dep	oe Allow eg $3a \times 2$ for $6a$ Terms collected		
5	$\frac{4}{5}$ or 0.8	A1	oe		
	Alternative method 2				
	$\frac{8-6}{3a-a} = \frac{10-6}{4-a}$ or $\frac{8-6}{3a-a} = \frac{10-8}{4-3a}$ or $\frac{10-6}{4-a} = \frac{10-8}{4-3a}$	M1	oe eg fractions inverted		
	8a + 2a = 8 or $6a + 4a = 8$ or $-12a + 2a = 8 - 16$ or $5a = 4$	M1dep	oe Allow eg $2a \times 4$ for $8a$ Terms collected		
	$\frac{4}{5}$ or 0.8	A1	oe		

Alternative method 3 and Additional Guidance continue on the next page

	Alternative method 3			
	$(8-6)^{2} + (3a-a)^{2}$ = $(10-8)^{2} + (4-3a)^{2}$ or $5a^{2} - 24a + 16 (=0)$ or $(10-6)^{2} + (4-a)^{2}$ = $2^{2}((8-6)^{2} + (3a-a)^{2})$ or $15a^{2} + 8a - 16 (=0)$ or $(10-6)^{2} + (4-a)^{2}$ = $2^{2}((10-8)^{2} + (4-3a)^{2})$ or $35a^{2} - 88a + 48 (=0)$	M1	oe Using $PM^2 = MQ^2$ or $PQ^2 = 4PM^2$ or $PQ^2 = 4MQ^2$	
5 cont	(5a-4)(a-4) (= 0) or $\frac{-24 \pm \sqrt{(-24)^2 - 4 \times 5 \times 16}}{2 \times 5}$ or $(5a-4)(3a+4) (= 0)$ or $\frac{-8 \pm \sqrt{8^2 - 4 \times 15 \times -16}}{2 \times 15}$ or $(5a-4)(7a-12) (= 0)$ or $\frac{88 \pm \sqrt{(-88)^2 - 4 \times 35 \times 48}}{2 \times 35}$	M1dep	oe eg $\frac{12}{5} \pm \sqrt{\frac{64}{25}}$ or $-\frac{4}{15} \pm \sqrt{\frac{256}{225}}$ or $\frac{44}{35} \pm \sqrt{\frac{256}{1225}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow eg 24^2 for $(-24)^2$ Implied by correct solutions to their 3-term quadratic seen	
	$\frac{4}{5}$ or 0.8	A1	oe Must reject solution 4 or $-\frac{4}{3}$ or $\frac{12}{7}$	
	Additional Guidance			
	Terms must be collected but do not here a (Alt 1) $a + 4 = 6a$ needs terms col	ave to be p lecting to	processed for M1dep 4 = 6a - a for M1dep	
	Rejection of solution is implied by only $\frac{4}{5}$ on answer line			

	$\sin 38 = \frac{r}{20}$ or $\cos (90 - 38) = \frac{r}{20}$ or $\frac{r}{\sin 38} = \frac{20}{\sin 90}$ or $\frac{\sin 38}{r} = \frac{\sin 90}{20}$	M1	oe Any letter	
	20 × sin 38 or 20 × cos (90 – 38) or $\frac{20}{\sin 90}$ × sin 38 12.3()	M1dep A1	oe M2 $\sqrt{20^2 - (20\cos 38)^2}$ M2 $\frac{\sqrt{20^2 + 20^2 - 2 \times 20 \times 20}}{2}$ SC2 Angle VAC = 38 see and answer 15 76() or	×cos(38×2) en on diagram
	Ade	ditional G	uidance	
6	If trigonometry and Pythagoras are used it must be a fully correct method that would lead to the correct value of r for M2			
	If cosine rule with angle (38×2) used that would lead to the correct value of	l it must be f <i>r</i> for M2	a fully correct method	
	Answer 15.76() or 15.8 but angle V	′AC = 38 n	ot seen	Zero
	12.3() seen and angle 38 in correct eg 20 sin 38 = 12.3 $\sqrt{20^2 - 12.3^2} = 15.8$	place with	further work	Zero
	sin 38 × 20 (even if subsequently eva	aluates sin	760)	M2
	Throughout, accept opp or o for r e	M1		
	$\sin = \frac{r}{20}$ or $\sin \theta = \frac{r}{20}$ (unless recovered)			MO
	Answer 12.3() coming from scale drawing			M2A1
	Answer 12 coming from scale drawing	g		Zero
	12.3() seen with no further work fol	lowed by a	nswer 12	M2A1

	Alternative method 1			
	(x-coordinate of A =) 10 and (y-coordinate of B =) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	
	(x-coordinate of P =) $\frac{2}{2+3} \times \text{their 10}$ or $\frac{2 \times \text{their 10} + 3 \times 0}{2+3}$ or 4	M1	oe their 10 must be their <i>x</i> -coordinate of <i>A</i> May be seen on diagram	
	(area of triangle <i>OBP</i> =) $\frac{1}{2} \times$ their 8 × their 4	M1dep	oe their 8 must be their <i>y</i> -coordinate of <i>B</i>	
7	16	A1ft	ft B0M2	
	Alternative method 2			
	(x-coordinate of A =) 10 and (y-coordinate of B =) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	
	(area of triangle $OAB =$) $\frac{1}{2} \times$ their 10 × their 8 or 40	M1	oe	
	(area of triangle <i>OBP</i> =) $\frac{2}{2+3}$ × their 40	M1dep	oe eg their $40 - \frac{3}{2+3} \times \text{their } 40$	
	16	A1ft	ft B0M2	

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

	Alternative method 3			
	(x-coordinate of $A =$) 10 and (y-coordinate of $B =$) 8	B1	May be implied on diagram eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	
	(area of triangle $OAB =$) $\frac{1}{2} \times$ their 10 × their 8 or 40	M1	oe	
7 cont	(y-coordinate of $P =$) $\frac{3}{2+3} \times \text{their 8 or 4.8}$ and (area of triangle $OPA =$) $\frac{1}{2} \times \text{their 10} \times \text{their 4.8 or 24}$ and (area of triangle $OBP =$) their 40 – their 24	M1dep	oe their 8 must be their <i>y</i> -coordinate of <i>B</i> <i>y</i> -coordinate of <i>P</i> may be seen on diagram	
	16	A1ft	ft B0M2	

Alternative method 4 and Additional Guidance continue on the next page

	Alternative method 4				
	(x-coordinate of A =) 10 and (y-coordinate of B =) 8	B1	May be implied on diagra eg 10 written next to <i>A</i> and 8 written next to <i>B</i>	am	
7 cont	$(AB =) \sqrt{\text{their } 10^2 + \text{their } 8^2}$ or $\sqrt{100 + 64}$ or $\sqrt{164}$ or $2\sqrt{41}$ or $12.8()$ and $(BP =) \frac{2}{2+3} \times \text{their } 12.8()$ or $5.12()$ and (angle $OBP =$) $\tan^{-1} \frac{\text{their } 10}{\text{their } 8}$ or $51.3()$	M1	oe their 10 must be their <i>x</i> -o their 8 must be their <i>y</i> -co	coordinate of <i>A</i> fordinate of <i>B</i>	
	(area of triangle <i>OBP</i> =) $\frac{1}{2}$ × their 8 × their 5.12 × sin their 51.3	M1dep	oe their 8 must be their y-co	ordinate of <i>B</i>	
	16	A1ft	ft B0M2		
	Additional Guidance				
	<i>A</i> = 10 and <i>B</i> = 8	B1			
	A (8, 0) and B (0, 10) is B0 but can su (answer 16)				
	A (0, 10) and B (8, 0) is B0 but can so x -coordinate of A as 10 and y -coordin				
	A (0, 8) and B (10, 0) is B0 but can so x -coordinate of A as 8 and y-coordinate				
	Area triangle OBP may be seen as th	wo right-angled triangles			
	Area triangle <i>OBP</i> may be seen as area trapezium <i>OBPX</i> – area triangle <i>OPX</i> <i>X</i> is on the <i>x</i> -axis with <i>PX</i> perpendicular to the <i>x</i> -axis				
	Allow marks for valid working seen ev				
	15.9() → answer 16 Answer 15.9()			4 marks B1M2A0	

	Alternative method 1				
8	(<i>BC</i> =) 12	B1	Allow as two 6s labelled on <i>BC</i> after perpendicular drawn from <i>A</i>		
	their $12^2 = 7^2 + 8^2$ $-2 \times 7 \times 8 \times \cos A$ or $144 = 49 + 64 - 112 \cos A$ or $144 = 113 - 112 \cos A$ or $\frac{7^2 + 8^2 - \text{their } 12^2}{2 \times 7 \times 8}$ or $\frac{49 + 64 - 144}{112}$ or $-\frac{31}{112}$ or $[-0.277, -0.27]$ or -0.28	M1	oe Do not allow if their 12 comes from use of Pythagoras' theorem ie $(BC =) \sqrt{7^2 + 8^2}$ or $\sqrt{113}$ or $10.6()$ is B0M0		
	$\cos^{-1}\left(\frac{7^2+8^2-\text{their }12^2}{2\times7\times8}\right)$	M1dep	oe May be implied by final answer		
	[106, 106.1]	A1ft	Only ft B0M2		
	Alternative method 2				
	(<i>BC</i> =) 12	B1	Allow as two 6s labelled on <i>BC</i> after perpendicular drawn from <i>A</i>		
	(angle ABC =) $\cos^{-1}\left(\frac{7^2 + \text{their } 12^2 - 8^2}{2 \times 7 \times \text{their } 12}\right)$ or 39.8 and $\sin A = \frac{\sin \text{ their } 39.8}{8} \times \text{their } 12$ or $\sin A = 0.96$	M1	oe eg works out angle <i>ACB</i> (= 34.09() or 34.1) and uses sine rule Do not allow if their 12 comes from use of Pythagoras' theorem ie (<i>BC</i> =) $\sqrt{7^2 + 8^2}$ or $\sqrt{113}$ or 10.6() is B0M0		
	180 – sin ^{–1} (their 0.96…)	M1dep	oe May be implied by final answer		
	[106, 106.1]	A1ft	Only ft B0M2		

Additional Guidance continues on the next page

8 cont	Additional Guidance	
	cos ⁻¹ or cos ⁻¹ ans does not score M1dep unless recovered	
	For the M1dep must have correct rearrangement but allow arithmetic errors	
	Answer outside range is A0 eg 106.2() from cos ⁻¹ (–0.28)	

	Alternative method 1			
	$-\frac{11}{5} < x \le \frac{5}{5}$ or $-2.2 < x \le \frac{5}{5}$	M1	oe eg $x \le \frac{5}{5}$ and $x > -\frac{11}{5}$	
	$-\frac{11}{5} < x \le 1 \text{ or } -2.2 < x \le 1$ or $-2 \le x \le 1 \text{ or } -2, -1, 0, 1$	A1	oe eg $x \le 1$ and $x > -\frac{11}{5}$	
	$6x - 4x \leq 4 - 7$ or $2x \leq -3$	M1	oe Collects terms	
	$x \leq -\frac{3}{2} \text{ or } x \leq -1.5$ or $x < -\frac{3}{2} \text{ or } x < -1.5$ or $x \leq -2 \text{ or } -2, -3 (, -4,)$	A1	$-2.2 < x \le -1.5$ or $-2 \le x \le -1.5$ implies M1A1M1A1	
	–2 with no other values given	A1	Must have gained M1A1M1A1	
0	Alternative method 2			
9	Shows that -2 satisfies either -11 < $5x \le 5$ or $6x + 7 \le 4x + 4$	M1	eg $-11 < -10 \le 5$ or $5x = -10$ and yes	
	Shows that -2 satisfies both -11 < $5x \le 5$ and $6x + 7 \le 4x + 4$	A1		
	Shows that -1 does not satisfy $6x + 7 \le 4x + 4$ or shows that -3 does not satisfy $-11 < 5x \le 5$	M1	eg –6 + 7 > –4 + 4	
	Shows that -1 does not satisfy $6x + 7 \le 4x + 4$ and shows that -3 does not satisfy $-11 < 5x \le 5$	A1		
	–2 with no other values given	A1	Must have gained M1A1M1A1	

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

	Alternative method 3		
9	$-\frac{11}{5} < x \le \frac{5}{5}$ or $-2.2 < x \le \frac{5}{5}$	M1	oe eg $x \le \frac{5}{5}$ and $x > -\frac{11}{5}$
	$-\frac{11}{5} < x \le 1 \text{ or } -2.2 < x \le 1$	A1	oe eg $x \leq 1$ and $x > -\frac{11}{5}$
	or $-2 \leq x \leq 1$ or $-2, -1, 0, 1$		
	Shows that –2 satisfies		eg $6 \times -2 + 7 = -5$
	$6x + 7 \leq 4x + 4$		and $4 \times -2 + 4 = -4 \checkmark$
	or	M1	
	shows that –1 does not satisfy		
	$6x + 7 \leq 4x + 4$		
	Shows that -2 satisfies		
	$6x + 7 \leqslant 4x + 4$		
	and	A1	
	shows that -1 does not satisfy		
	$6x + 7 \leqslant 4x + 4$		
	–2 with no other values given	A1	Must have gained M1A1M1A1

Alternative method 4 and Additional Guidance continue on the next page

	Alternative method 4				
	$6x - 4x \leq 4 - 7$ or $2x \leq -3$	M1	oe Collects terms		
	$x \le -\frac{3}{2}$ or $x \le -1.5$ or $x < -\frac{3}{2}$ or $x < -1.5$	A1			
	or $x \leq -2$ or $-2, -3$ (, $-4,$)				
9	Shows that -2 satisfies $-11 < 5x \le 5$ or shows that -3 does not satisfy $-11 < 5x \le 5$	M1	eg $-11 < -10 \le 5$ or $5x = -10$ and yes		
	Shows that -2 satisfies $-11 < 5x \le 5$ and shows that -3 does not satisfy $-11 < 5x \le 5$	A1			
	-2 with no other values given	A1	Must have gained M1A1M	1A1	
	Additional Guidance				
	Allow eg max 1 and min -2.2 for -2 . list of values				
	Condone omission of non-critical value	ts eg –2, –1, 1			
-	Using = signs when solving inequaliti recovered	re M marks only unless			
	Incorrect notation $eg \leq for < can sc$				
	If answers to trials evaluated they mu				
	Choose the scheme that favours the	student			
	-2 identified as the only integer with	Zero			

	Alternative method 1				
	Alternative method 1				
	$\frac{1}{2} \times x \times x \times \sin 150 \text{ or } \frac{1}{4}x^2$ or $\frac{1}{2} \times b \times c \times \sin 150 = 57.76$ or $\frac{1}{4} \times b \times c = 57.76$	M1	oe Any letter(s)		
	$x^{2} = \frac{57.76 \times 2}{\sin 150}$ or $x^{2} = 57.76 \times 4$ or $x^{2} = 231(.04)$ or $\frac{1}{2}x = \sqrt{57.76}$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$	M1dep	oe eg $x^2 = \frac{57.76}{\frac{1}{2} \sin 150}$ Must have either $x^2 =$ or $\frac{1}{2}x = \sqrt{57.76}$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$ Any letter	-	
	15.2	A1			
10	Alternative method 2				
	$\frac{1}{2} \times x \times x \cos \frac{150}{2} \times \sin \frac{150}{2}$ $= \frac{57.76}{2}$	M1	oe Any letter		
	$x^{2} = \frac{57.76}{\cos\frac{150}{2}\sin\frac{150}{2}}$ or $x^{2} = 231(.04)$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$	M1dep	oe Must have either $x^2 =$ or $\sqrt{231(.04)}$ or $2\sqrt{57.76}$ Any letter	-	
	15.2	A1			
	Ad	ditional G	uidance		
	Do not allow 15 as a misread of 150				
	x can be b or AB or AC etc				
	b and c can be a and b or AB and AC etc				

	Straight line between (–2, 7) and (0, 3)	B1	Tolerance of ±1 small squ Allow line to be extended	uare I
	Points (0, 3) (1, 4) (2, 3) (3, 0) (4, -5)	M1	Tolerance of ±1 small squ May be plotted or seen in Points can be implied	uare n a table
	Correct smooth parabolic curve with maximum at (1, 4)	A1	Tolerance of ±1 small square Allow (ruled) straight line between (3, and (4, -5) Curve passing through all correct poi within tolerance scores M1A1	
	Straight line between (4, –5) and (5, 0)	B1	Tolerance of ±1 small square Allow line to be extended	
	Ad			
11(a)	Ignore extra points plotted			
	Tolerance of ±1 small square means it is on the edges of or within the shaded area			
	Points only can score a maximum of			
	Ruled straight lines for curve apart fro	A0		
	If all 4 marks would be awarded but e (i) graph has a line or a curve that ex or (ii) the curve does not meet a line at a	3 marks		

	$-5 \leqslant f(x) \leqslant 7$		Correct or ft their graph in for B2	n (a)
	or $7 \ge 1(x) \ge -5$ or $[-5, 7]$		ft their graph in (a) for B1	
		B2ft	B1ft $-5 \le f(x)$ or $f(x) \le 7$ on their own or embedded within an interval for $f(x)$	
			or only –5 and 7 chosen	
	Ad	ditional G	uidance	
	Allow $f(x)$ to be y or f or fx			
	eg1 $-5 \leq y \leq 7$			B2
	eg2 f ≤ 7			B1
	Allow as two inequalities $f(x) \ge -5$	(and/or) f(.	x) ≤ 7	B2
	ft their graph if incomplete eg no graph drawn for $-2 \le x < 0$ but otherwise correct and answer $-5 \le f(x) \le 4$			B2ft
	ft their graph if drawn for x values beyond $[-2, 5]$			
	eg1 straight line from (–3, 8) to (6, –1) and answer $-1 \le y \le 8$			B2ft
44/L)	eg2 straight line from (–3, 8) to (6, –1) and answer $f(x) \leq 8$			B1ft
11(b)	Straight line from (–2, 9) to (6, –7) and answer $-7 \le y \le 9$			B2ft
	Straight line from (0, 9) to (5, -4) and answer $-4 \le f(x) \le 9$			B2ft
	B2ft (or B1ft) can be awarded for a range beyond [–7, 9] if it is clear from working (eg a table of values) where the answer is from			
	–5 to 7 inclusive is B2 whereas –5 to 7 is B1			
	B1 for a correct inequality embedded			
	eg1 $-5 < f(x) \le 7$			B1
	eg2 $-5 \leq f(x) \leq 0$			B1
	eg3 $-2 \leq y \leq 7$			B1
	For B1 ignore incorrect notation if only	y –5 and 7	chosen	
	eg1 $-5 \leq x \leq 7$			B1
	eg2 $-5 < x \le 7$			B1
	eg3 $-5 \ge f(x) \ge 7$			B1
	eg4 –5, 7			B1
	{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6,	, 7}		B0
	Working out a statistical range eg -	-5 to 7 = 12	2	B0

12(a)	$3(25 - x^2)$ or $-3(x^2 - 25)$ or $(15 + 3x)(5 - x)$ or $(x + 5)(15 - 3x)$	M1	oe partial factorisation eg $-(3x + 15)(x - 5)$ Brackets in either order Do not allow $-(3x^2 - 75)$	
	3(5 + x)(5 - x) or $3(-x - 5)(x - 5)$ or $-3(x + 5)(x - 5)$ or $-3(5 - x)(-x - 5)$	A1	lidanco	
	(-x + 5) is equivalent to $(5 - x)$ etc			
	Do not allow A1 for incorrect notation in final answer eg $(5 + x)3(5 - x)$			M1A0
	Do not allow A1 for use of multiplication signs in final answer eg $3 \times (5 + x) \times (5 - x)$			M1A0
	Correct answer followed by incorrect further work			M1A0

	Alternative method 1			
	$9n^{2} + 3n + 3n + 1$ or $9n^{2} + 6n + 1$ or $9n^{2} - 3n - 3n + 1$ or $9n^{2} - 6n + 1$	M1	oe Terms may be seen in a grid	
	12 <i>n</i> with no incorrect working	A1	Brackets can be recovered	
	Alternative method 2			
	(3n + 1 + 3n - 1)(3n + 1 - (3n - 1))	M1	oe	
	or $(3n + 1 + 3n - 1)(3n + 1 - 3n + 1)$		Brackets around $3n - 1$ carecovered	an be
	12 <i>n</i>	A1		
12(b)	Additional Guidance			
	Alt 1 12 <i>n</i> may come from incorrect working			
	eg1 $3n^2 + 6n + 1 - (3n^2 - 6n + 1) = 12n$			M0A0
	eg2 $9n^2 + 3n + 1 - (9n^2 - 3n + 1) = 12n$			M0A0
	Alt 1 Recovery of brackets			
	eg1 $9n^2 + 6n + 1 - 9n^2 - 6n + 1 = 12n$			M1A1
	eg2 $9n^2 + 6n + 1 - 9n^2 - 6n + 1 = 2$			M1A0
	Alt 2 Recovery of brackets			
	eg1 $(3n + 1 + 3n - 1)(3n + 1 - 3n - 1) = 12n$			M1A1
	eg2 $(3n + 1 + 3n - 1)(3n + 1 - 3n - 1) = 0$			M0A0
	Do not allow A1 for use of multiplication	ion signs ir	n final answer	
	eg 12 × n with no incorrect working			M1A0

13	Single correct fraction with terms processed	M1	eg1 $\frac{600a^5 + 1200a^4}{36a^3 + 72a^2}$ eg2 $\frac{50a^3 + 100a^2}{3a + 6}$ Only bracket allowed is (a) eg $\frac{50a^4(a+2)}{3a^3 + 6a^2}$ (scores)	a + 2) M2)
	Factorises correctly using (<i>a</i> + 2)	M1	Only needs to be seen once eg1 $\frac{8a}{3a+6} \times \frac{5(a+2)}{3a^2} \div \frac{4}{15a^3}$ eg2 $\frac{8a}{3(a+2)} \times \frac{5a+10}{3a^2} \times \frac{15a^3}{4}$ Award M2 for fully correct unprocessed expression with full cancelling seen eg $\frac{28a}{3(a+2)} \times \frac{5(a+2)}{3(a+2)} \times \frac{515a^{3}}{4}$ or $\frac{2a}{3} \times 5 \times 5a$ oe	
	$\frac{50a^2}{3}$ or $16\frac{2}{3}a^2$ or $16.6a^2$	A1		
	Additional Guidance			
	$\frac{50 \times a \times a}{3}$			M2A0
	A correct single fraction with $(a + 2)$ cancelled will be M2 eg1 $\frac{250a^2}{15}$ eg2 $\frac{50a^4}{3a^2}$			M2A0
	$\frac{8a}{3} \times \frac{5(a+2)}{3a^2} \times \frac{15a^3}{4}$			M0M1A0
	3a + 6 = 3(a + 2) with no other valid working			M0M1A0
	Brackets other than $(a + 2)$ may be seen $\frac{10a^2(5a + 10)}{3a + 6}$			M0M0
	Correct answer followed by incorrect	further wor	·k	M2A0
	Allow one miscopy for up to M2A0			

	Alternative method 1			
	$-\frac{1}{4}$ or -0.25	B1	gradient of $x + 4y = 74$ Do not allow embedded May be implied	
	(gradient =) $\frac{-1}{\text{their} - \frac{1}{4}}$ or 4	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y = 4x + b$ or $a = 4$ (B1M1)	
	$(y=)$ $\frac{74-2}{4}$ or $\frac{72}{4}$ or 18	M1	oe May be seen on diagram	
44	their 18 = their $4 \times 2 + b$ or y – their 18 = their $4(x - 2)$	M1dep	oe dep on M2	
	<i>b</i> = 10	A1ft	ft 18 – their 4 × 2 if B0M3	
14	Alternative method 2			
	$-\frac{1}{4}$ or -0.25	B1	gradient of $x + 4y = 74$ Do not allow embedded May be implied	
	(gradient =) $\frac{-1}{\text{their} - \frac{1}{4}}$ or 4	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y = 4x + b$ or $a = 4$ (B1M1)	
	Correct method for elimination of y from $x + 4y = 74$ and $y =$ their $4x + b$	M1dep	eg $x + 4(4x + b) = 74$ or $17x + 4b = 74$	
	Substitutes $x = 2$ into their equation	M1dep	eg 34 + 4 b = 74	
	<i>b</i> = 10	A1ft	ft 18 – their 4 × 2 if B0M3	

Alternative method 3 and Additional Guidance continue on the next page

	Alternative method 3			
	$-\frac{1}{4}$ or -0.25	B1	gradient of $x + 4y = 74$ Do not allow embedded May be implied	
	(gradient =) $\frac{-1}{\text{their} - \frac{1}{4}}$ or 4	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numer Implied by $y = 4x + b$ or a	ical value a = 4 (B1M1)
	$(y =) \frac{74-2}{4}$ or $\frac{72}{4}$ or 18	M1	oe May be seen on diagram	
14 cont	Correct method for elimination of <i>x</i> from x + 4y = 74 and $y =$ their $4x + band substitutes y = their 18$	M1dep	eg $y = 4(74 - 4y) + b$ or $17y = 296 + b$ and $306 = 296 + b$ dep on M2	
	<i>b</i> = 10	A1ft	ft 18 – their 4 × 2 if B0M3	3
	Additional Guidance			
	y = 4x + 10 will gain full marks unless contradicted			
	If an error is made in the constant term when rearranging $x + 4y = 74$ the B1 can still be awarded for gradient $= -\frac{1}{4}$ eg $y = -\frac{1}{4}x + 19$ and gradient $= -\frac{1}{4}$ is B1 (all other marks are possible)			
	In alt 1 and alt 3 the mark for $y = 18$ warded	vill sometin	nes be the only mark	

	Alternative method 1				
	wy = 8x - y	$w = \frac{8x}{y} - 1$ or $w + 1 = \frac{8x}{y}$	M1		
	wy + y = 8x or $y(w + 1) = 8x$	$\frac{w+1}{8x} = \frac{1}{y}$	M1dep	oe y term(s) collected eg $-wy - y = -8x$ M2 $\frac{8x}{w+1}$ or $\frac{-8x}{-w-1}$ or $\frac{-8x}{-w-1}$	$\frac{-8x}{-(w+1)}$
	$y = \frac{8x}{w+1} \text{ or } y =$ or $y = \frac{-8x}{-(w+1)}$	$\frac{-8x}{-w-1}$	A1	oe eg $y = \frac{4x}{0.5w + 0.5}$ Must have $y =$	
	Alternative method 2				
15	$y = \frac{8x}{w} - \frac{y}{w}$		M1		
	$y + \frac{y}{w} = \frac{8x}{w}$ or $y($	$1 + \frac{1}{w}) = \frac{8x}{w}$	M1dep	oe y term(s) collected M2 $\frac{\frac{8x}{w}}{1+\frac{1}{w}}$	
	$y = \frac{\frac{8x}{w}}{1 + \frac{1}{w}}$		A1	oe Must have <i>y</i> =	
	Additional Guidance				
	$y = \frac{8x}{w+1}$ in working with $\frac{8x}{w+1}$ on answer line etc			M2A1	
	Allow multiplications signs and 1s throughout				
	$w = \frac{8x}{y} - \frac{y}{y}$ with	no further simplific	ation		MO
	Correct answer fo	llowed by incorrect	further wor	k	M2A0

16(a)	3 ^{-2b}	B1		
	Additional Guidance			

	5 ^{<i>x</i>+2}	B1		
16(b)	Additional Guidance			

	2 ^{3m}	B1		
16(c)	Ad	ditional Gu	lidance	

	3 <i>x</i> ² or (–)12 <i>x</i>	M1	Attempt at $\frac{dy}{dx}$		
	their $(3x^2 - 12x) = 0$	M1dep	Must have at least 2 terms for their $\frac{dy}{dx}$ The = 0 can be implied by sight of a correct non-zero solution to their $(3x^2 - 12x) = 0$		
	x = 4 (and $x = 0$)	A1ft	ft M2 if their $\frac{dy}{dx}$ is a 2-ter	m quadratic	
17(a)	(4, -25) with correct expression for $\frac{dy}{dx}$ seen	A1			
	Additional Guidance				
	Condone $y = 3x^2 - 12x$ etc			M1	
	Ignore working for second derivative				
	Stating $\frac{dy}{dx} = 0$ is not sufficient for sec correct solution(s) seen	cond M mar	k but may be implied by		

	Alternative method 1				
	$(-1)^{3} - 6(-1)^{2} + 7 = 0$ with no incorrect evaluations seen or $-1 - 6 + 7 = 0$	B1	Must have = 0		
	Alternative method 2				
17(b)	$(x + 1)(x^2 - 7x + 7) = 0$ and $(x + 1) = 0$ and $x = -1$	B1			
	Additional Guidance				
	$(-1)^3 - 6(-1)^2 + 7$ or $-1 - 6 + 7$			B0	
	Allow -1^3 or (-1^3) for $(-1)^3$				
	Allow recovery of brackets for $(-1)^2$				
	eg1 $-1^3 - 6 \times -1^2 + 7 = 0$			B0	
	eg2 $-1^3 - 6 \times -1^2 + 7 = -1 - 6 + 7 =$	= 0		B1	

	Alternative method 1			
	(x1) or $(x + 1)$ seen	M1		
17(c)	$(x+1)(x^2-7x+c)$	M1dep	<i>c</i> can be any non-zero value Implied by $(x + 1)(x^2 + bx + c)$ and $b + 1 = -6$ or $b = -7$	
	$x^2 - 7x + 7 (= 0)$	A1		
	$\frac{-7\pm\sqrt{(-7)^2-4\times1\times7}}{2\times1}$ or $\frac{7\pm\sqrt{21}}{2}$	M1	oe eg $\frac{7}{2} \pm \sqrt{\frac{21}{4}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets Allow 7 ² for (-7) ² Implied by correct solutions to their 3-term quadratic seen	
	5.79 and 1.21 with $x^2 - 7x + 7$ (= 0) seen	A1	Must both be to 2 dp	
	Alternative method 2			
	(x1) or $(x + 1)$ seen	M1		
	$\frac{x^2 - 7x \dots}{x + 1 x^3 - 6x^2 (+ 0x) + 7}$	M1dep		
	$x^2 - 7x + 7 (= 0)$	A1		
	$\frac{-7 \pm \sqrt{(-7)^2 - 4 \times 1 \times 7}}{2 \times 1}$ or $\frac{7 \pm \sqrt{21}}{2}$	M1	oe eg $\frac{7}{2} \pm \sqrt{\frac{21}{4}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets Allow 7 ² for (-7) ² Implied by correct solutions to their 3-term quadratic seen	
	5.79 and 1.21 with $x^2 - 7x + 7$ (= 0) seen	A1	Must both be to 2 dp	

Additional Guidance is on the next page

	Additional Guidance	
17(c)	Final A1 mark can be awarded if both answers seen in working with $x^2 - 7x + 7$ (= 0) seen but only one answer is written on answer line	
cont	(x + 1) followed by 5.79 and 1.21 without $x^2 - 7x + 7$ (= 0) seen	M1M0A0 M0A0
	(x - 1) instead of $(x + 1)$ can score a maximum of M0M0A0M1A0	
	T & I on the cubic equation	Zero

	$x^{2} + (2x)^{2} = (4y)^{2}$ or $x^{2} + 4x^{2} = 16y^{2}$	M1	oe eg $5x^2 = (4y)^2$ Missing brackets may be	erecovered	
	$x^{2} = \frac{16}{5}y^{2} \text{ or } 5x^{2} = 16y^{2}$ or $x = \sqrt{\frac{16y^{2}}{5}} \text{ or } x\sqrt{5} = 4y$	M1	oe equation of the form $ax^2 = by^2$ or $cx = dy$ or x eg $x^2 = 16y^2 \div 5$ ft if Pythagoras used with being missing brackets	$x = \sqrt{ky^2}$ In only error	
	$2 \times \text{their } \frac{16}{5}y^2$ or their $16y^2 \div \frac{\text{their } 5}{2}$	M1dep	oe 2 × their x^2 or 2 × (their $x)^2$ dep on at least one M		
18	$\frac{32}{5}y^2$ or $6\frac{2}{5}y^2$ or $6.4y^2$	A1			
	Additional Guidance				
	$5x^2 = (4y)^2$ with no further work	M1M0M0			
	$x^2 + 4x^2 = 4y^2$ with answer $\frac{8}{5}y^2$	MOM1M1A0			
	$x^{2} + 2x^{2} = 16y^{2}$ with answer $\frac{32}{3}y^{2}$	MOM1M1A0			
	$x^2 + 2x^2 = 4y^2$ with answer $\frac{8}{3}y^2$	MOM1M1A0			
	$(2x)^2 = (4y)^2 - x^2$	M1			
	$x^2 = 16y^2$ and $2 \times 16y^2 = 32y^2$	M0M1A0			
	$\frac{32}{5}y^2$ followed by further work			M3A0	

	k	B1		
19(b)	(b) Additional Guidance			
	-k = 0 or $-k = 1$ etc			B0

	$k^{2} + \cos^{2} \alpha = 1$ or $1 - k^{2}$	M1	oe eg (1 + <i>k</i>)(1 – <i>k</i>)	
	$\sqrt{1-k^2}$ or $\sqrt{(1+k)(1-k)}$	A1		
	Additional Guidance			
19(c)	Answer – $\sqrt{1-k^2}$ or $\pm \sqrt{1-k^2}$			M1A0
	Correct answer followed by incorrect further work			M1A0
	Answer 1 – k^2			M1A0
	Allow $\cos^2 x$ or $\cos^2 \theta$ etc or \cos^2 or c^2 or $(\cos \alpha)^2$ for $\cos^2 \alpha$			
	Condone $\cos \alpha^2$ for $\cos^2 \alpha$			
	$\cos(\sin^{-1}k)$			M0A0

	Angle in a semicircle (is a right angle) or Angle at centre is 180°, angle at circumference is half the angle at the centre (= 90°) or Angle at centre is 180°, angle at centre is twice the angle at the circumference or Angle subtended at circumference by a diameter	B1		
	Ade			
	Do not allow half a circle to mean a semicircle			
20(a)	Allow extra words if not contradictory			
	eg1 Angle at the circumference in a semicircle			B1
	Angle subtended by a diameter (no mention of at circumference)			B0
	Angle in a hemisphere is 90	B0		
	Angle at centre is 180	B0		
	Angle at circumference is half the ang	B0		
	2 chords on diameter meet at 90			B0
	Triangle in a semicircle always has a	right angle		B0
	Angle in a semicircle is 180			B0
	Angle on a diameter is a right angle			B0
	Because AB is a diameter			B0

	angle ABE = 90 - x or angle CBE = 90 + x angle CDE = 90 -	angle $DEB = 90$ and angle $DCB = 90$	B1 B1dep B1dep		
	angle $DCE = 2x$ and all reasons given t	for their proof	B1dep	See guidance for acceptable wording for reasons	
	Additional Guidance				
	To award a partic	ular mark, all previo	evious marks must have been awarded		
	First three B mark				
	Do not mark any working on the diagram – statements are needed				
20(b)	Incorrect angles score B0 eg1 angle $ABE = 90 - x$ angle $DEC = 90 + x$ eg2 angle $ABE = 90 - x$ angle $CDE = 90 - x$ angle $DCE = 90 + x$			B1B0B0B0 B1B1B0B0	
	Angle CDE and angle CDA are the same angle etc				
	Angle EBA and angle ABE are the same angle etc				
	Condone ABE for				
	Do not allow angle C for angle DCE etc				
	CE must be proven to be a tangent if used in a response				
	Reasons angle sum of triangle (is 180°) or angles in a triangle (add to 180°) or 180° in a triangle				Degrees symbol may
	(adjacent) angles or 180° on a (strai	on a (straight) line (ight) line	add to 180	°)	Abbreviations
	exterior angle of the	riangle (= sum of op	posite inter	rior angles)	are allowed
	(equal angles in a	n) isosceles (triangl n a) cyclic quadrilat	le) or <i>CD</i> eral (add to	= <i>CE</i> 0.180°)	quadrilateral
	exterior angle of cyclic quadrilateral (add to 180°)				
	9 • • • • • • • • • • • • • • • • • • •				1

	(0, 8)	B1			
	Additional Guidance				
	Answer line takes precedence over working lines and diagram 21(a) Answer line blank with C labelled (0, 8) on diagram Answer line blank with 8 written next to C on diagram				
21(a)					
	(8, 0)				
	Answer 8			B0	

	$-x^{2} - 2x + 4x + 8$ $-x^{2} - 2x + 4x + 8$ $0t - x^{2} + 2x + 8$	M1 A1	Allow one error but no of Must have an x^2 term Terms may be seen in a Implied by $-x^2 + 2x + k$ or $ax^2 + 2x + 8$ $a \neq 0$ $-x^2 - 2x + 4x + 8$ but an collection of terms is M1	mission grid k≠0 error in any A0
	-2x - 2 + 4 or $-2x + 2or -2(x - 1) or 2(1 - x)$	A1ft	oe ft their quadratic in <i>x</i> with M1 award	
	Ado	idance		
21(b)	2 - 2x with final answer 2 (from subst	= 0)	M1A1A0	
	Condone $y = 2 - 2x$ or $f(x) = 2 - 2x$ in	or M1A1		
	If $(\frac{dy}{dx} \text{ or } f'(x) =) 2 - 2x \text{ on answer lin}$	rd final A1		
	y = 2 - 2x or $f(x) = 2 - 2x$ on answer	⁻ line		M1A1A0
	When marking (b), a maximum of M1 expansion seen on the previous page in (b)			
	The final A1 must be seen in (b)			
	eg1 (b) no expansion seen with an ar At top of previous page $-x^2 + 2x + 8$	M1A1A0		
	eg2 (b) no expansion seen with an a In (a) $-x^{2} + 2x + 4x + 8 = -x^{2} + 6x$	M1A0A1ft		
	Correct use of product rule and gradie	ent functior	n = -2x + 2	3 marks

	Alternative method 1				
	(gradient of curve at $C =$) 2	B1ft	Correct or ft their (b) when $x = 0$ May be implied		
	$-\frac{1}{\text{their 2}} \text{ or } -\frac{1}{2}$	M1	oe ft their 2 Only ft a non-zero numerical value (gradient of normal =) $-\frac{1}{2}$ is B1M1		
	$y = (\text{their} - \frac{1}{2})x + \text{their 8}$ or $y - \text{their 8} = \text{their} - \frac{1}{2}(x - 0)$	M1dep	Must have used gradient of normal not gradient of tangent Correct or ft their 8 from (a) in the form (0, <i>k</i>)		
	$0 = (\text{their} - \frac{1}{2})x + \text{their 8}$ or $0 - \text{their 8} = \text{their} - \frac{1}{2}(x - 0)$ or $x = 16$	M1dep	Correct or ft their 8 from (a) in the form (0, <i>k</i>)		
21(c)	x = 16 and $BD = 12$ and $AB = 6with correct method seen$	A1	ое		
	Alternative method 2				
	(gradient of curve at $C =$) 2	B1ft	Correct or ft their (b) when $x = 0$ May be implied		
	$-\frac{1}{\text{their 2}} \text{ or } -\frac{1}{2}$	M1	oe ft their 2 Only ft a non-zero numerical value (gradient of normal =) $-\frac{1}{2}$ is B1M1		
	$\frac{0 - \text{their 8}}{x - 0} = \text{their} - \frac{1}{2}$ or $x = -\text{their 8} \div \text{their} - \frac{1}{2}$ or $x = 16$	M2dep	oe Correct or ft their 8 from (a) in the form (0, <i>k</i>)		
	x = 16 and $BD = 12$ and $AB = 6with correct method seen$	A1	oe		
	Ado	ditional Gu	idance		

	Alternative method 1		
	$(x-2)^2 + (2x+1-1)^2 = 16$	M1	oe Eliminates y
	$x^{2} - 2x - 2x + 4 + 4x^{2} = 16$ or $5x^{2} - 4x - 12$ (= 0)	M1dep	oe Expands both brackets correctly
22	(5x+6)(x-2) (= 0) or $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 5 \times -12}}{2 \times 5}$	M1	oe eg $\frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 4 ² for (-4) ² Implied by correct solutions to their 3-term quadratic seen
	(x =) -1.2 and $(x =) 2or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(x =) -\frac{6}{5}$ and $(x =) 2$ with $5x^2 - 4x - 12$ (= 0) seen
	(-1.2, -1.4) and $(2, 5)with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2, 5) with $5x^2 - 4x - 12$ (= 0) seen

	Alternative method 2		
	$x^{2} - 2x - 2x + 4 + y^{2} - y - y + 1 = 16$	M1	oe Expands both brackets correctly
	$x^{2}-2x-2x+4+(2x+1)^{2}$ - (2x + 1) - (2x + 1) + 1 = 16 or 5x ² -4x-12 (= 0)	M1dep	oe Eliminates y
22	$(5x+6)(x-2) (= 0)$ or $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 5 \times -12}}{2 \times 5}$	M1	oe eg $\frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 4 ² for (-4) ² Implied by correct solutions to their 3-term quadratic seen
	(x =) -1.2 and $(x =) 2or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $(x =) -\frac{6}{5}$ and $(x =) 2$ with $5x^2 - 4x - 12$ (= 0) seen
	(-1.2, -1.4) and $(2, 5)with 5x^2 - 4x - 12 (= 0) seen$	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2, 5) with $5x^2 - 4x - 12$ (= 0) seen

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

	Alternative method 3		
	$\left(\left(\frac{y-1}{2}\right)-2\right)^2+(y-1)^2=16$	M1	oe Eliminates <i>x</i>
	$\left(\frac{y-1}{2}\right)^2 - 2\left(\frac{y-1}{2}\right) - 2\left(\frac{y-1}{2}\right) + 4$ $+ y^2 - y - y + 1 = 16$ or 5y ² - 18y - 35 (= 0)	M1dep	oe Expands $\left(\left(\frac{y-1}{2}\right)-2\right)^2$ and $(y-1)^2$ correctly
22	(5y+7)(y-5) (= 0) or $\frac{-18 \pm \sqrt{(-18)^2 - 4 \times 5 \times -35}}{2 \times 5}$	M1	oe eg $\frac{9}{5} \pm \sqrt{\frac{256}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 18^2 for $(-18)^2$ Implied by correct solutions to their 3-term quadratic seen
	(y =) -1.4 and $(y =) 5or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5y^2 - 18y - 35 (= 0) seen$	A1	oe eg $(y =) -\frac{7}{5}$ and $(y =) 5$ with $5y^2 - 18y - 35$ (= 0) seen
	(-1.2, -1.4) and (2, 5) with $5y^2 - 18y - 35$ (= 0) seen	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2, 5) with $5y^2 - 18y - 35$ (= 0) seen

Alternative method 4 and Additional Guidance continue on the next page

	Alternative method 4			
	$x^2 - 2x - 2x + 4 + y^2 - y - y + 1 = 16$	M1	oe Expands both brackets co	rrectly
22	$\left(\frac{y-1}{2}\right)^2 - 2\left(\frac{y-1}{2}\right) - 2\left(\frac{y-1}{2}\right) + 4 + y^2 - y - y + 1 = 16$ or $5y^2 - 18y - 35$ (= 0)	M1dep	oe Eliminates <i>x</i>	
	(5y + 7)(y - 5) = 0 or $\frac{-18 \pm \sqrt{(-18)^2 - 4 \times 5 \times -35}}{2 \times 5}$	M1	oe eg $\frac{9}{5} \pm \sqrt{\frac{256}{25}}$ Correct attempt to solve the quadratic Allow recovery of brackets Allow 18 ² for (-18) ² Implied by correct solution their 3-term quadratic see	neir 3-term s in formula is to n
	(y =) -1.4 and $(y =) 5or (x =) -1.2 and (y =) -1.4or (x =) 2 and (y =) 5with 5y^2 - 18y - 35 (= 0) seen$	A1	oe eg (y =) $-\frac{7}{5}$ and (y =) with $5y^2 - 18y - 35$ (= 0) s	5 een
	(-1.2, -1.4) and $(2, 5)with 5y^2 - 18y - 35 (= 0) seen$	A1	oe eg $\left(-\frac{6}{5}, -\frac{7}{5}\right)$ and (2) with $5y^2 - 18y - 35$ (= 0) s	2, 5) seen
	Ade			
	Answers only (no valid working)			Zero
	Both solutions from scale drawing			5 marks
	(2, 5) is often seen without seeing any	correct me	ethod	Zero
	Allow one miscopy for up to M3A0A0			

	Alternative method 1		
	Replaces $\tan x$ with $\frac{\sin x}{\cos x}$ at least once in given expression	M1	eg $\frac{1}{\frac{\sin^2 x}{\cos^2 x}} - \frac{1}{\sin^2 x}$
23	Correct steps leading to the single fraction $\frac{\cos^2 x - 1}{\sin^2 x}$ or $\frac{\cos^2 x - 1}{1 - \cos^2 x}$ or $\frac{1 - \sin^2 x - 1}{\sin^2 x}$ or $\frac{\cos^2 x - \cos^2 x - \sin^2 x}{\sin^2 x}$ or $\frac{-\sin^2 x}{\sin^2 x}$	M1dep	
	$\frac{\cos^2 x - 1}{\sin^2 x} = \frac{-\sin^2 x}{\sin^2 x} = -1$ or $\frac{\cos^2 x - 1}{1 - \cos^2 x} = -1$ or $\frac{1 - \sin^2 x - 1}{\sin^2 x} = -1$ or $\frac{-\sin^2 x}{\sin^2 x} = -1$	A1	Must see all steps leading to -1

Alternative method 2 and Additional Guidance continue on the next page

23 cont	Alternative method 2				
	Replaces $\tan x$ with $\frac{\sin x}{\cos x}$ at least once in given expression	M1	eg $\frac{\sin^2 x - \frac{\sin^2 x}{\cos^2 x}}{\sin^2 x \frac{\sin^2 x}{\cos^2 x}}$		
	Correct steps leading to the single fraction $\frac{\sin^2 x (\cos^2 x - 1)}{\sin^4 x}$ or $\frac{-\sin^4 x}{\sin^4 x}$	M1dep			
	$\frac{\sin^2 x (\cos^2 x - 1)}{\sin^4 x} = \frac{-\sin^4 x}{\sin^4 x} = -1$ or $\frac{-\sin^4 x}{\sin^4 x} = -1$	A1	Must see all steps leading t	o –1	
	Additional Guidance				
	Allow $\cos^2 \theta$ etc or \cos^2 or c^2 or $(\cos x)^2$ for $\cos^2 x$ etc				
	Condone $\cos x^2$ for $\cos^2 x$ etc				
	Only substituting values for x				
	$\frac{\cos^2 x - 1}{\sin^2 x}$ etc with no working				
	Alt 2 $\frac{\sin^2 x \cos^2 x - \sin^2 x}{\sin^4 x}$ with no further working				
	Any fully correct response that shows how the given expression is equal to –1 is awarded 3 marks				
	eg $\frac{1}{\frac{\sin^2 x}{\cos^2 x}} - \frac{1}{\sin^2 x} = \frac{\cos^2 x}{\sin^2 x} - \frac{1}{\sin^2 x} = \frac{1 - \sin^2 x}{\sin^2 x} - \frac{1}{\sin^2 x}$				
	$= \frac{1}{\sin^2 x} - \frac{\sin^2 x}{\sin^2 x} - \frac{1}{\sin^2 x} = -1$				
	$\cot^2 x - \csc^2 x = -1$			3 marks	

	Alternative method 1			
24	$12(x^2 - 5x) \dots$ or $12(x - 2.5)^2 \dots$	M1	oe eg 12{ $(x^2 - 5x) \dots$ } or 12 $(x^2 - 5x \dots)$	
	$12\{(x - 2.5)^2 - 2.5^2\}$ or $12(x - 2.5)^2 - 75$	M1dep	oe eg 12{ $(x - 2.5)^2 - 2.5^2 \dots$ }	
	$12(x - 2.5)^2 - 12 \times 2.5^2 + 5$ or $12(x - 2.5)^2 - 70$	M1dep	oe eg 12(x - 2.5) ² - 12 × 2.5 ² + 12 × $\frac{5}{12}$	
	$12\left(\frac{2x-5}{2}\right)^2 - 12 \times 2.5^2 + 5$	M1dep	oe eg $12\left(\frac{2x-5}{2}\right)^2 - 12 \times 2.5^2 + 12 \times \frac{5}{12}$	
	$3(2x-5)^2 - 70$ or a = 3 $b = 2$ $c = -5$ $d = -70or3(5-2x)^2 - 70ora = 3$ $b = -2$ $c = 5$ $d = -70$	A1	oe	

	Alternative method 2					
24	$3(4x^2 - 20x) \dots$ or $3(2x - 5)^2 \dots$	M1	oe eg $3\{(4x^2 - 20x) \dots\}$ or $3(4x^2 - 20x \dots)$			
	$3\{(2x-5)^2-5^2\}\dots$ or $3(2x-5)^2-75\dots$	M1dep	oe eg $3\{(2x-5)^2-5^2\}$			
	$3\{(2x-5)^2-5^2\}+5$	M1dep	oe eg $3\{(2x-5)^2-5^2+\frac{5}{3}\}$			
	$3(2x-5)^2-3 \times 5^2+5$	M1dep	oe eg $3(2x-5)^2 - 3 \times 5^2 + 3$	$\times \frac{5}{3}$		
	$3(2x-5)^2 - 70$ or a = 3 $b = 2$ $c = -5$ $d = -70$		oe			
	or $3(5-2x)^2 - 70$	A1				
	a = 3 $b = -2$ $c = 5$ $d = -70$					
	Additional Guidance					
	For M marks 2.5 may be seen as $\frac{5}{2}$					
	For M marks $(x - 2.5)^2$ may be replaced by $(2.5 - x)^2$ etc					
	Expansion of given form followed by trial and improvement					
	eg1 $3(2x-5)^2 - 70$ (or $a = 3$ $b = 2$ $c = -5$ $d = -70$) eg2 Not fully correct			5 marks Zero		