AQA

LEVEL 2 CERTIFICATE Further Mathematics

Paper 2 8360/2 Calculator
Mark scheme

8360
June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent.
eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
$[\mathrm{a}, \mathrm{b}) \quad$ Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments

1(a)	$\frac{3-5 \times 20}{2}$ or $\frac{3-100}{2}$ or $(-) \frac{97}{2}$ or $(-) 48.5$ or $\frac{3-5 \times 8}{2}$ or $\frac{3-40}{2}$ or $(-) \frac{37}{2}$ or $(-) 18.5$ or $12 \times(-) \frac{5}{2}$	M1	oe	
	(-)30	A1	Acce	are seen
	Additional Guidance			

1(b)	$-\frac{3}{2}$ or $-1 \frac{1}{2}$ or -1.5	B1	oe	
	Additional Guidance			
	Condone $\frac{3}{-2}$ or $n \rightarrow-1.5$ or $-1 \frac{1}{2} \rightarrow \infty$			B1
	$-\frac{3 h}{2 h}$			B1
	$-\frac{3 n}{2 n}$ not processed			B0
	$\frac{3}{0-2}$ not processed			B0
	-1.5n			B0

2(a)	$\left(\begin{array}{cc}13 & -2 \\ 6 & 1\end{array}\right)$	B2	B1 13 or -2 or 6 or in correct position in	
	Additional Guidance			
	Condone missing brackets for B 2 or B 1 if numbers in a 2 by 2 array			
	Brackets may be square or curly etc			
	Ignore commas and fraction lines			
	$\left(\begin{array}{cc}13 & -2 \\ 6 & 1\end{array}\right)$ followed by further work			B1

2(b)	$5 k=11-3 k$ or $2 k=11-6 k$ or $11-3 k=\frac{5}{2}(11-6 k)$ or $8 k=11$ $\frac{11}{8}$ or $1 \frac{3}{8}$ or 1.375 with no incorrect equation seen	M1	oe Any one correct equation	
		A1	oe	
	Additional Guidance			
	$\binom{5 k}{2 k}=\binom{11-3 k}{11-6 k}$ with no further correct work			M0
	Ignore subsequent attempt to convert $\frac{11}{8}$ to a mixed fraction or decimal			M1A1
	Ignore subsequent attempt to convert $1 \frac{3}{8}$ to an improper fraction or decimal			M1A1
	Ignore subsequent rounding or truncation of 1.375			M1A1
	Answer only 1.37 or 1.38 or 1.4			M0
	T \& 1 is 2 or zero			

3(a)	$\begin{aligned} & 3(x) 455 \text { or } 5(x) 273 \text { or } 7(x) 195 \\ & \text { or } 13(x) 105 \text { or } 15(x) 91 \\ & \text { or } 21(x) 65 \text { or } 35(x) 39 \\ & \text { or } 3(x) 5(x) 7(x) 13 \end{aligned}$	M1	oe eg Any ord Must be May be division	or repe
	$3 \quad 591$ or 3765 $\begin{array}{llll}\text { or } & 3 & 13 & 35\end{array}$ or 5739 or $5 \quad 13 \quad 21$ $\begin{array}{llll}\text { or } 7 & 13 & 15\end{array}$	A1	Any ord Must be	
	Additional Guidance			
	If using division the correct answer must be seen for M1			
	Correct answer can be implied by working lines eg $3(x) 5(x) 91$ with blank answer line			M1A1
	Answer line correct			M1A1
	Allow inclusion of 1 for M1 eg 1 (\times) 3 ($\times 455$			M1

3(b)	$b(a-11)$ or $-b(11-a)$	M1	Implied by square numbers >1 used eg1 4(36-11) eg2 $9(16-11)$	
	$a=36$ and $b=$ square number >1 with working for M1 seen	A1	Must be in correct order Allow unprocessed squares eg $a=6^{2}$ and $b=5^{2}$ SC1 $a=36$ and $b=$ square number >1 without working for M1 seen	
	Additional Guidance			
	$b(a-11)=0$ or $b(a-11)$ with further work			M1
	Answer line takes precedence over working lines			
	Embedded answer eg $81(36-11)$			M1A0

4	$\left(\frac{56}{4}\right)^{3}$ or 14^{3} or $4^{3} x=56^{3}$ or $64 x=175616$ or $\frac{56^{3}}{x}=4^{3}$	M1	oe oe equation in $x^{(1)}$ or $\frac{1}{x}$	
	2744	A1		
	Additional Guidance			
	$\sqrt[3]{x}=\frac{56}{4}$ or $\sqrt[3]{x}=14$ with no corrser			M0
	$56 x^{-\frac{1}{3}}=4$			M0
	Solving $\frac{56}{3 x}=4$			M0
	Answer 14^{3} with 2744 not seen			M1A0
	Embedded solution			M1A0

5	Alternative method 1		
	$\frac{a+4}{2}=3 a$ or $3 a-a=4-3 a$ or $a+\frac{4-a}{2}=3 a$ or $4-\frac{4-a}{2}=3 a$ or $4-a=2(3 a-a)$	M1	oe
	$6 a-a=4$ or $3 a-a+3 a=4$ or $2 a-a-6 a=-4$ or $8-4=6 a-a$ or $4=4 a+a$ or $5 a=4$	M1dep	oe Allow eg $3 a \times 2$ for $6 a$ Terms collected
	$\frac{4}{5}$ or 0.8	A1	oe
	Alternative method 2		
	$\begin{aligned} & \frac{8-6}{3 a-a}=\frac{10-6}{4-a} \\ & \text { or } \frac{8-6}{3 a-a}=\frac{10-8}{4-3 a} \\ & \text { or } \frac{10-6}{4-a}=\frac{10-8}{4-3 a} \end{aligned}$	M1	oe eg fractions inverted
	$8 a+2 a=8$ or $6 a+4 a=8$ or $-12 a+2 a=8-16$ or $5 a=4$	M1dep	oe Allow eg $2 a \times 4$ for $8 a$ Terms collected
	$\frac{4}{5}$ or 0.8	A1	oe

Alternative method 3 and Additional Guidance continue on the next page

7	Alternative method 1		
	(x-coordinate of $A=$) 10 and (y-coordinate of $B=$) 8	B1	May be implied on diagram eg 10 written next to A and 8 written next to B
	(x-coordinate of $P=$) $\frac{2}{2+3} \times$ their 10 or $\frac{2 \times \text { their } 10+3 \times 0}{2+3}$ or 4	M1	oe their 10 must be their x-coordinate of A May be seen on diagram
	(area of triangle $O B P=$) $\frac{1}{2} \times$ their $8 \times$ their 4	M1dep	oe their 8 must be their y-coordinate of B
	16	A1 ft	$\mathrm{ft} \mathrm{B0M2}$
	Alternative method 2		
	(x-coordinate of $A=$) 10 and (y-coordinate of $B=$) 8	B1	May be implied on diagram eg 10 written next to A and 8 written next to B
	(area of triangle $O A B=$) $\frac{1}{2} \times$ their $10 \times$ their 8 or 40	M1	oe
	(area of triangle $O B P=$) $\frac{2}{2+3} \times \text { their } 40$	M1dep	oe eg their $40-\frac{3}{2+3} \times$ their 40
	16	A1ft	ft B0M2

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

$\begin{gathered} 7 \\ \text { cont } \end{gathered}$	Alternative method 3		
	(x-coordinate of $A=$) 10 and (y-coordinate of $B=$) 8	B1	May be implied on diagram eg 10 written next to A and 8 written next to B
	(area of triangle $O A B=$) $\frac{1}{2} \times$ their $10 \times$ their 8 or 40	M1	oe
	(y-coordinate of $P=$) $\frac{3}{2+3} \times$ their 8 or 4.8 and (area of triangle $O P A=$) $\frac{1}{2} \times$ their $10 \times$ their 4.8 or 24 and (area of triangle $O B P=$) their 40 - their 24	M1dep	oe their 8 must be their y-coordinate of B y-coordinate of P may be seen on diagram
	16	A1ft	ft B0M2

Alternative method 4 and Additional Guidance continue on the next page

$\begin{gathered} 7 \\ \text { cont } \end{gathered}$	Alternative method 4			
	(x-coordinate of $A=$) 10 and (y-coordinate of $B=$) 8	B1	May be implied on diagram eg 10 written next to A and 8 written next to B	
	$(A B=) \sqrt{\text { their } 10^{2}+\text { their } 8^{2}}$ or $\sqrt{100+64}$ or $\sqrt{164}$ or $2 \sqrt{41}$ or 12.8(...) and $(B P=) \frac{2}{2+3} \times$ their $12.8(\ldots)$ or 5.12(...) and (angle $O B P=) \tan ^{-1} \frac{\text { their } 10}{\text { their } 8}$ or 51.3(...)	M1	oe their 10 must be their their 8 must be their y -	dinate of A inate of B
	(area of triangle $O B P=$) $\frac{1}{2} \times$ their $8 \times$ their 5.12 $\times \sin$ their 51.3	M1dep	oe their 8 must be their y-coordinate of B	
	16	A1ft	ft B0M2	
	Additional Guidance			
	$A=10$ and $B=8$			B1
	$A(8,0)$ and $B(0,10)$ is B0 but can subsequently score up to M2A1ft (answer 16)			
	$A(0,10)$ and $B(8,0)$ is B 0 but can score up to M2A1ft if uses x-coordinate of A as 10 and y-coordinate of B as 8 (answer 16)			
	$A(0,8)$ and $B(10,0)$ is B 0 but can score up to M2A1ft if uses x-coordinate of A as 8 and y-coordinate of B as 10 (answer 16)			
	Area triangle $O B P$ may be seen as the sum of two right-angled triangles			
	Area triangle $O B P$ may be seen as area trapezium $O B P X$ - area triangle $O P X$ X is on the x-axis with $P X$ perpendicular to the x-axis			
	Allow marks for valid working seen even if not subsequently used			
	15.9(...) \rightarrow answer 16 Answer 15.9(...)			4 marks B1M2A0

Additional Guidance continues on the next page

8 $\boldsymbol{8}$ cont	Additional Guidance	
	$\cos ^{-1}$ or $\cos ^{-1}$ ans does not score M1dep unless recovered	For the M1dep must have correct rearrangement but allow arithmetic errors
	Answer outside range is A0 eg 106.2(...) from $\cos ^{-1}(-0.28)$	

[^0]| 9 | Alternative method 3 | | |
| :---: | :---: | :---: | :---: |
| | $-\frac{11}{5}<x \leqslant \frac{5}{5} \text { or }-2.2<x \leqslant \frac{5}{5}$ | M1 | oe eg $x \leqslant \frac{5}{5}$ and $x>-\frac{11}{5}$ |
| | $-\frac{11}{5}<x \leqslant 1 \text { or }-2.2<x \leqslant 1$
 or $-2 \leqslant x \leqslant 1$ or $-2,-1,0,1$ | A1 | $\text { oe eg } x \leqslant 1 \text { and } x>-\frac{11}{5}$ |
| | Shows that -2 satisfies $6 x+7 \leqslant 4 x+4$
 or shows that -1 does not satisfy $6 x+7 \leqslant 4 x+4$ | M1 | eg $6 \times-2+7=-5$
 and $4 \times-2+4=-4 \checkmark$ |
| | Shows that -2 satisfies $6 x+7 \leqslant 4 x+4$
 and shows that -1 does not satisfy $6 x+7 \leqslant 4 x+4$ | A1 | |
| | -2 with no other values given | A1 | Must have gained M1A1M1A1 |

Alternative method 4 and Additional Guidance continue on the next page

	Alternative method 1		
	$\begin{aligned} & \frac{1}{2} \times x \times x \times \sin 150 \text { or } \frac{1}{4} x^{2} \\ & \text { or } \frac{1}{2} \times b \times c \times \sin 150=57.76 \\ & \text { or } \frac{1}{4} \times b \times c=57.76 \end{aligned}$	M1	oe Any letter(s)
10	$x^{2}=\frac{57.76 \times 2}{\sin 150}$ or $x^{2}=57.76 \times 4$ or $x^{2}=231(.04)$ or $\frac{1}{2} x=\sqrt{57.76}$ or $\sqrt{231(.04)}$ or $2 \sqrt{57.76}$	M1dep	oe eg $x^{2}=\frac{57.76}{\frac{1}{2} \sin 150}$ Must have either $x^{2}=$ or $\frac{1}{2} x=\sqrt{57.76}$ or $\sqrt{231(.04)}$ or $2 \sqrt{57.76}$ Any letter
	15.2	A1	
	Alternative method 2		
	$\begin{aligned} & \frac{1}{2} \times x \times x \cos \frac{150}{2} \times \sin \frac{150}{2} \\ & =\frac{57.76}{2} \end{aligned}$	M1	oe Any letter
	$x^{2}=\frac{57.76}{\cos \frac{150}{2} \sin \frac{150}{2}}$ or $x^{2}=231(.04)$ or $\sqrt{231(.04)}$ or $2 \sqrt{57.76}$	M1dep	oe Must have either $x^{2}=$ or $\sqrt{231(.04)}$ or $2 \sqrt{57.76}$ Any letter
	15.2	A1	
	Additional Guidance		
	Do not allow 15 as a misread of 150		
	x can be b or $A B$ or $A C$ etc		
	b and c can be a and b or $A B$ and $A C$ etc		

11(a)	Straight line between $(-2,7)$ and (0, 3)	B1	Tolerance of ± 1 small square Allow line to be extended	
	$\begin{aligned} & \text { Points }(0,3)(1,4)(2,3)(3,0) \\ & (4,-5) \end{aligned}$	M1	Tolerance of ± 1 small square May be plotted or seen in a table Points can be implied	
	Correct smooth parabolic curve with maximum at $(1,4)$	A1	Tolerance of ± 1 small square Allow (ruled) straight line between (3,0) and ($4,-5$) Curve passing through all correct points within tolerance scores M1A1	
	Straight line between ($4,-5$) and (5,0)	B1	Tolerance of ± 1 small square Allow line to be extended	
	Additional Guidance			
	Ignore extra points plotted			
	Tolerance of ± 1 small square means it is on the edges of or within the shaded area			
	Points only can score a maximum of M1			
	Ruled straight lines for curve apart from between (3,0) and (4, -5)			A0
	If all 4 marks would be awarded but either (i) graph has a line or a curve that extends beyond the individual domains or (ii) the curve does not meet a line at a cusp			3 marks

12(a)	$\begin{aligned} & 3\left(25-x^{2}\right) \text { or }-3\left(x^{2}-25\right) \\ & \text { or }(15+3 x)(5-x) \\ & \text { or }(x+5)(15-3 x) \end{aligned}$	M1	oe partial fa eg $-(3 x+1$ Brackets in Do not allow	
	$\begin{aligned} & 3(5+x)(5-x) \\ & \text { or } 3(-x-5)(x-5) \\ & \text { or }-3(x+5)(x-5) \\ & \text { or }-3(5-x)(-x-5) \end{aligned}$	A1		
	Additional Guidance			
	$(-x+5)$ is equivalent to (5-x) etc			
	Do not allow A1 for incorrect notation in final answer eg $(5+x) 3(5-x)$			M1A0
	Do not allow A1 for use of multiplication signs in final answer eg $3 \times(5+x) \times(5-x)$			M1A0
	Correct answer followed by incorrect further work			M1A0

12(b)	Alternative method 1			
	$9 n^{2}+3 n+3 n+1$ or $9 n^{2}+6 n+1$ or $9 n^{2}-3 n-3 n+1$ or $9 n^{2}-6 n+1$	M1	oe Terms may be seen in a grid	
	$12 n$ with no incorrect working	A1	Brackets can be recovered	
	Alternative method 2			
	$\begin{aligned} & (3 n+1+3 n-1)(3 n+1-(3 n-1)) \\ & \text { or }(3 n+1+3 n-1)(3 n+1-3 n+1) \end{aligned}$	M1	oe Brackets around $3 n-1$ can be recovered	
	$12 n$	A1		
	Additional Guidance			
	Alt $112 n$ may come from incorrect working eg1 $3 n^{2}+6 n+1-\left(3 n^{2}-6 n+1\right)=12 n$eg2 $9 n^{2}+3 n+1-\left(9 n^{2}-3 n+1\right)=12 n$			$\begin{aligned} & \text { MOAO } \\ & \text { MOAO } \end{aligned}$
	Alt 1 Recovery of brackets$\begin{aligned} & \text { eg1 } 9 n^{2}+6 n+1-9 n^{2}-6 n+1=12 n \\ & \text { eg2 } 9 n^{2}+6 n+1-9 n^{2}-6 n+1=2 \end{aligned}$			M1A1 M1A0
	Alt 2 Recovery of brackets$\begin{aligned} & \text { eg1 }(3 n+1+3 n-1)(3 n+1-3 n-1)=12 n \\ & \text { eg2 }(3 n+1+3 n-1)(3 n+1-3 n-1)=0 \end{aligned}$			M1A1 MOAO
	Do not allow A1 for use of multiplication signs in final answer eg $12 \times n$ with no incorrect working			M1A0

13	Single correct fraction with terms processed	M1	$\begin{aligned} & \text { eg1 } \frac{600 a^{5}+1200 a^{4}}{36 a^{3}+72 a^{2}} \\ & \text { eg2 } \frac{50 a^{3}+100 a^{2}}{3 a+6} \end{aligned}$ Only bracket allowed is ($a+2$) eg $\frac{50 a^{4}(a+2)}{3 a^{3}+6 a^{2}}$ (scores M2)	
	Factorises correctly using ($a+2$)	M1	Only needs to be seen once eg1 $\frac{8 a}{3 a+6} \times \frac{5(a+2)}{3 a^{2}} \div \frac{4}{15 a^{3}}$ eg2 $\frac{8 a}{3(a+2)} \times \frac{5 a+10}{3 a^{2}} \times \frac{15 a^{3}}{4}$ Award M2 for fully correct unprocessed expression with full cancelling seen $\text { eg } \frac{{ }^{2} \not 8 a}{3(a+2)} \times \frac{5(a+2)}{\not 2 \not a^{2}} \times \frac{5 y 5 a \beta^{1}}{\not 4}$ or $\frac{2 a}{3} \times 5 \times 5 a$ oe	
	$\frac{50 a^{2}}{3}$ or $16 \frac{2}{3} a^{2}$ or $16.6 a^{2}$	A1		
	Additional Guidance			
	$\frac{50 \times a \times a}{3}$			M2A0
	A correct single fraction with $(a+2)$ cancelled will be M2 eg1 $\frac{250 a^{2}}{15}$ eg2 $\frac{50 a^{4}}{3 a^{2}}$			M2A0
	$\frac{8 a}{3} \times \frac{5(a+2)}{3 a^{2}} \times \frac{15 a^{3}}{4}$			M0M1A0
	$3 a+6=3(a+2)$ with no other valid working			M0M1A0
	Brackets other than $(a+2)$ may be seen $\frac{10 a^{2}(5 a+10)}{3 a+6}$			MOMO
	Correct answer followed by incorrect further work			M2A0
	Allow one miscopy for up to M2A0			

14	Alternative method 1		
	$-\frac{1}{4} \text { or }-0.25$	B1	gradient of $x+4 y=74$ Do not allow embedded May be implied
	$\text { (gradient }=\text {) } \frac{-1}{\text { their }-\frac{1}{4}} \text { or } 4$	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y=4 x+b$ or $a=4$ (B1M1)
	$(y=) \frac{74-2}{4}$ or $\frac{72}{4}$ or 18	M1	oe May be seen on diagram
	their $18=$ their $4 \times 2+b$ or y - their $18=$ their $4(x-2)$	M1dep	oe dep on M2
	$b=10$	A1ft	ft 18 - their 4×2 if B0M3
	Alternative method 2		
	$-\frac{1}{4} \text { or }-0.25$	B1	gradient of $x+4 y=74$ Do not allow embedded May be implied
	$\text { (gradient }=\text {) } \frac{-1}{\text { their }-\frac{1}{4}} \text { or } 4$	M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y=4 x+b$ or $a=4$ (B1M1)
	Correct method for elimination of y from $x+4 y=74 \text { and } y=\text { their } 4 x+b$	M1dep	eg $x+4(4 x+b)=74$ or $17 x+4 b=74$
	Substitutes $x=2$ into their equation	M1dep	eg $34+4 b=74$
	$b=10$	A1ft	ft 18 - their 4×2 if B0M3

Alternative method 3 and Additional Guidance continue on the next page

$\begin{gathered} 14 \\ \text { cont } \end{gathered}$	Alternative method 3			
	$\begin{aligned} & -\frac{1}{4} \text { or }-0.25 \\ & \text { (gradient }=\text {) } \frac{-1}{\text { their }-\frac{1}{4}} \text { or } 4 \end{aligned}$	B1	gradient of $x+4 y=74$ Do not allow embedded May be implied	
		M1	ft their $-\frac{1}{4}$ Only ft a non-zero numerical value Implied by $y=4 x+b$ or $a=4$ (B1M1)	
	$(y=) \frac{74-2}{4}$ or $\frac{72}{4}$ or 18	M1	oe May be seen on diagram	
	Correct method for elimination of x from $x+4 y=74 \text { and } y=\text { their } 4 x+b$ and substitutes $y=$ their 18	M1dep	$\begin{aligned} & \text { eg } y=4(74-4 y)+b \text { or } 17 y=296+b \\ & \text { and } 306=296+b \\ & \text { dep on M2 } \end{aligned}$	
	$b=10$	A1ft	ft 18 - their 4×2 if BOM3	
	Additional Guidance			
	$y=4 x+10$ will gain full marks unless contradicted			
	If an error is made in the constant term when rearranging $x+4 y=74$ the $B 1$ can still be awarded for gradient $=-\frac{1}{4}$ eg $y=-\frac{1}{4} x+19$ and gradient $=-\frac{1}{4}$ is B1 (all other marks are possible)			
	In alt 1 and alt 3 the mark for $y=18$ will sometimes be the only mark awarded			

16(a)	$3^{-2 b}$	B 1		
	Additional Guidance			

16(b)	5^{x+2}	B 1		
	Additional Guidance			

16(c)	$2^{3 m}$	B 1		
	Additional Guidance			

17(a)	$3 x^{2}$ or (-)12x	M1	Attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$	
	their $\left(3 x^{2}-12 x\right)=0$	M1dep	Must have at least 2 terms for their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ The $=0$ can be implied by sight of a correct non-zero solution to their $\left(3 x^{2}-12 x\right)=0$	
	$x=4($ and $x=0)$	A1ft	ft M 2 if their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is a 2-term quadratic	
	$(4,-25)$ with correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ seen	A1		
	Additional Guidance			
	Condone $y=3 x^{2}-12 x$ etc			M1
	Ignore working for second derivative or testing for minimum point			
	Stating $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ is not sufficient for second M mark but may be implied by correct solution(s) seen			

17(b)	Alternative method 1			
	$(-1)^{3}-6(-1)^{2}+7=0$ with no incorrect evaluations seen or $-1-6+7=0$	B1	Must have $=0$	
	Alternative method 2			
	$\begin{aligned} & (x+1)\left(x^{2}-7 x+7\right)=0 \\ & \text { and }(x+1)=0 \\ & \text { and } x=-1 \end{aligned}$	B1		
	Additional Guidance			
	$(-1)^{3}-6(-1)^{2}+7$ or $-1-6+7$			B0
	Allow -1^{3} or $\left(-1^{3}\right)$ for $(-1)^{3}$			
	Allow recovery of brackets for $(-1)^{2}$ eg $1-1^{3}-6 \times-1^{2}+7=0$ eg $2-1^{3}-6 \times-1^{2}+7=-1-6+7=0$			B0 B1

17(c)	Alternative method 1		
	$(x-1)$ or ($x+1$) seen	M1	
	$(x+1)\left(x^{2}-7 x+c\right)$	M1dep	c can be any non-zero value Implied by $(x+1)\left(x^{2}+b x+c\right)$ and $b+1=-6$ or $b=-7$
	$x^{2}-7 x+7(=0)$	A1	
	$\begin{aligned} & \frac{--7 \pm \sqrt{(-7)^{2}-4 \times 1 \times 7}}{2 \times 1} \\ & \text { or } \frac{7 \pm \sqrt{21}}{2} \end{aligned}$	M1	$\text { oe eg } \frac{7}{2} \pm \sqrt{\frac{21}{4}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets Allow 7^{2} for $(-7)^{2}$ Implied by correct solutions to their 3-term quadratic seen
	5.79 and 1.21 with $x^{2}-7 x+7(=0)$ seen	A1	Must both be to 2 dp
	Alternative method 2		
	$(x-1)$ or ($x+1$) seen	M1	
	$\frac{x^{2}-7 x \ldots}{x + 1 \longdiv { x ^ { 3 } - 6 x ^ { 2 } (+ 0 x) + 7 }}$	M1dep	
	$x^{2}-7 x+7(=0)$	A1	
	$\begin{aligned} & \frac{--7 \pm \sqrt{(-7)^{2}-4 \times 1 \times 7}}{2 \times 1} \\ & \text { or } \frac{7 \pm \sqrt{21}}{2} \end{aligned}$	M1	$\text { oe eg } \frac{7}{2} \pm \sqrt{\frac{21}{4}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets Allow 7^{2} for $(-7)^{2}$ Implied by correct solutions to their 3-term quadratic seen
	5.79 and 1.21 with $x^{2}-7 x+7(=0)$ seen	A1	Must both be to 2 dp

Additional Guidance is on the next page

$\begin{array}{l}\text { 17(c) } \\ \text { cont }\end{array}$	$\begin{array}{l}\text { Final A1 mark can be awarded if both answers seen in working } \\ \text { with } x^{2}-7 x+7(=0) \text { seen but only one answer is written on answer line }\end{array}$	
	$(x+1)$ followed by 5.79 and 1.21 without $x^{2}-7 x+7(=0)$ seen	M1MOA0
	$(x-1)$ instead of $(x+1)$ can score a maximum of M0M0A0M1A0	

19(a)	k	B 1	
	Additional Guidance		
	$k=0$ or $k=1$ etc	B0	

$\mathbf{1 9}$ (b)	$-k$	B 1	
	Additional Guidance		
	$-k=0$ or $-k=1$ etc	B0	

19(c)	$k^{2}+\cos ^{2} \alpha=1$ or $1-k^{2}$	M1	oe eg $(1+k)(1-k)$	
	$\sqrt{1-k^{2}}$ or $\sqrt{(1+k)(1-k)}$	A1		
	Additional Guidance			
	Answer $-\sqrt{1-k^{2}}$ or $\pm \sqrt{1-k^{2}}$			M1A0
	Correct answer followed by incorrect further work			M1A0
	Answer $1-k^{2}$			M1A0
	Allow $\cos ^{2} x$ or $\cos ^{2} \theta$ etc or $\cos ^{2}$ or c^{2} or ($\left.\cos \alpha\right)^{2}$ for $\cos ^{2} \alpha$			
	Condone $\cos \alpha^{2}$ for $\cos ^{2} \alpha$			
	$\cos \left(\sin ^{-1} k\right)$			M0A0

20(b)	angle $A B E$ $=90-x$ or angle CBE $=90+x$	angle $D E B=90$ and angle $D C B=90$	B1		
	angle $C D E=90-x$		B1dep		
	angle $C E D=90-x$		B1dep		
	angle $D C E=2 x$ and all reasons given for their proof		B1dep	See guidance for acceptable wording for reasons	
	Additional Guidance				
	To award a particular mark, all previous marks must have been awarded				
	First three B marks can be awarded with no or incorrect reasons				
	Do not mark any working on the diagram - statements are needed				
	Incorrect angles score B0 eg1 angle $A B E=90-x$ angle $D E C=90+x$ eg2 angle $A B E=90-x$ angle $C D E=90-x \quad$ angle $D C E=90+x$				$\begin{aligned} & \text { B1B0B0B0 } \\ & \text { B1B1B0B0 } \end{aligned}$
	Angle CDE and angle CDA are the same angle etc				
	Angle $E B A$ and angle $A B E$ are the same angle etc				
	Condone ABE for angle ABE etc				
	Do not allow angle C for angle DCE etc				
	CE must be proven to be a tangent if used in a response				
	Reasons angle sum of triangle (is 180°) or angles in a triangle (add to 180°) or 180° in a triangle (adjacent) angles on a (straight) line (add to 180°) or 180° on a (straight) line exterior angle of triangle (= sum of opposite interior angles) (equal angles in an) isosceles (triangle) or $C D=C E$ (opposite angles in a) cyclic quadrilateral (add to 180°) exterior angle of cyclic quadrilateral (= opposite interior angle)				Degrees symbol may be omitted Abbreviations are allowed eg quad for quadrilateral

	$(0,8)$	B1	
	Additional Guidance		
	Answer line takes precedence over working lines and diagram	B1	
	Answer line blank with C labelled (0, 8) on diagram	B0	
	Answer line blank with 8 written next to C on diagram	B0	
	$(8,0)$	B0	

21(b)	$-x^{2}-2 x+4 x+8$	M1	Allow one error but no omission Must have an x^{2} term Terms may be seen in a grid Implied by $-x^{2}+2 x+k \quad k \neq 0$ or $a x^{2}+2 x+8 \quad a \neq 0$	
	$\begin{aligned} & -x^{2}-2 x+4 x+8 \\ & \text { or }-x^{2}+2 x+8 \end{aligned}$	A1	$-x^{2}-2 x+4 x+8$ but an error in any collection of terms is M1A0	
	$-2 x-2+4 \text { or }-2 x+2$ or $-2(x-1)$ or $2(1-x)$	A1ft	oe ft their quadratic in x with M1 awarded	
	Additional Guidance			
	$2-2 x$ with final answer 2 (from substituting in $x=0$)			M1A1A0
	Condone $y=2-2 x$ or $\mathrm{f}(x)=2-2 x$ in working for M1A1 If ($\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\mathrm{f}^{\prime}(x)=$) $2-2 x$ on answer line also award final A1			
	$y=2-2 x$ or $\mathrm{f}(x)=2-2 x$ on answer line			M1A1A0
	When marking (b), a maximum of M1A1A0 can be awarded from an expansion seen on the previous page if not contradicted by an expansion in (b) The final A1 must be seen in (b) eg1 (b) no expansion seen with an answer of $2 x+2$ At top of previous page $-x^{2}+2 x+8$ eg2 (b) no expansion seen with an answer of $-2 x+6$ In (a) $-x^{2}+2 x+4 x+8=-x^{2}+6 x+8$			M1A1A0 M1A0A1ft
	Correct use of product rule and gradient function $=-2 x+2$			3 marks

22	Alternative method 1		
	$(x-2)^{2}+(2 x+1-1)^{2}=16$	M1	oe Eliminates y
	$\begin{aligned} & x^{2}-2 x-2 x+4+4 x^{2}=16 \\ & \text { or } 5 x^{2}-4 x-12(=0) \end{aligned}$	M1dep	oe Expands both brackets correctly
	$(5 x+6)(x-2) \quad(=0)$ or $\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 5 \times-12}}{2 \times 5}$	M1	$\text { oe eg } \frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 4^{2} for $(-4)^{2}$ Implied by correct solutions to their 3-term quadratic seen
	$(x=)-1.2$ and $(x=) 2$ or $(x=)-1.2$ and $(y=)-1.4$ or $(x=) 2$ and $(y=) 5$ with $5 x^{2}-4 x-12(=0)$ seen	A1	oe eg $(x=)-\frac{6}{5}$ and $(x=) 2$ with $5 x^{2}-4 x-12(=0)$ seen
	$(-1.2,-1.4)$ and $(2,5)$ with $5 x^{2}-4 x-12(=0)$ seen	A1	oe eg $\left(-\frac{6}{5},-\frac{7}{5}\right)$ and $(2,5)$ with $5 x^{2}-4 x-12(=0)$ seen

22	Alternative method 2		
	$x^{2}-2 x-2 x+4+y^{2}-y-y+1=16$	M1	oe Expands both brackets correctly
	$\begin{aligned} & x^{2}-2 x-2 x+4+(2 x+1)^{2} \\ & -(2 x+1)-(2 x+1)+1=16 \\ & \text { or } 5 x^{2}-4 x-12(=0) \end{aligned}$	M1dep	oe Eliminates y
	$(5 x+6)(x-2) \quad(=0)$ or $\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 5 \times-12}}{2 \times 5}$	M1	oe eg $\frac{2}{5} \pm \sqrt{\frac{64}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 4^{2} for $(-4)^{2}$ Implied by correct solutions to their 3-term quadratic seen
	$(x=)-1.2$ and $(x=) 2$ or $(x=)-1.2$ and $(y=)-1.4$ or $(x=) 2$ and $(y=) 5$ with $5 x^{2}-4 x-12(=0)$ seen	A1	oe eg $(x=)-\frac{6}{5}$ and $(x=) 2$ with $5 x^{2}-4 x-12(=0)$ seen
	($-1.2,-1.4$) and $(2,5)$ with $5 x^{2}-4 x-12(=0)$ seen	A1	oe eg $\left(-\frac{6}{5},-\frac{7}{5}\right)$ and $(2,5)$ with $5 x^{2}-4 x-12(=0)$ seen

Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

22	Alternative method 3		
	$\left(\left(\frac{y-1}{2}\right)-2\right)^{2}+(y-1)^{2}=16$	M1	oe Eliminates x
	$\begin{aligned} & \left(\frac{y-1}{2}\right)^{2}-2\left(\frac{y-1}{2}\right)-2\left(\frac{y-1}{2}\right)+4 \\ & +y^{2}-y-y+1=16 \\ & \text { or } 5 y^{2}-18 y-35(=0) \end{aligned}$	M1dep	oe Expands $\left(\left(\frac{y-1}{2}\right)-2\right)^{2}$ and $(y-1)^{2}$ correctly
	$(5 y+7)(y-5)(=0)$ or $\frac{--18 \pm \sqrt{(-18)^{2}-4 \times 5 \times-35}}{2 \times 5}$	M1	$\text { oe eg } \frac{9}{5} \pm \sqrt{\frac{256}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 18^{2} for $(-18)^{2}$ Implied by correct solutions to their 3-term quadratic seen
	($y=$) -1.4 and $(y=) 5$ or $(x=)-1.2$ and $(y=)-1.4$ or $(x=) 2$ and $(y=) 5$ with $5 y^{2}-18 y-35(=0)$ seen	A1	oe eg $(y=)-\frac{7}{5}$ and $(y=) 5$ with $5 y^{2}-18 y-35(=0)$ seen
	$(-1.2,-1.4)$ and $(2,5)$ with $5 y^{2}-18 y-35(=0)$ seen	A1	oe eg $\left(-\frac{6}{5},-\frac{7}{5}\right)$ and $(2,5)$ with $5 y^{2}-18 y-35(=0)$ seen

Alternative method 4 and Additional Guidance continue on the next page

22	Alternative method 4			
	$x^{2}-2 x-2 x+4+y^{2}-y-y+1=16$	M1	oe Expands both brackets correctly	
	$\begin{aligned} & \left(\frac{y-1}{2}\right)^{2}-2\left(\frac{y-1}{2}\right)-2\left(\frac{y-1}{2}\right)+ \\ & 4+y^{2}-y-y+1=16 \\ & \text { or } 5 y^{2}-18 y-35(=0) \end{aligned}$	M1dep	oe Eliminates x	
	$(5 y+7)(y-5)(=0)$ or $\frac{--18 \pm \sqrt{(-18)^{2}-4 \times 5 \times-35}}{2 \times 5}$	M1	$\text { oe eg } \frac{9}{5} \pm \sqrt{\frac{256}{25}}$ Correct attempt to solve their 3-term quadratic Allow recovery of brackets in formula Allow 18^{2} for $(-18)^{2}$ Implied by correct solutions to their 3-term quadratic seen	
	($y=$) -1.4 and $(y=) 5$ or $(x=)-1.2$ and $(y=)-1.4$ or $(x=) 2$ and $(y=) 5$ with $5 y^{2}-18 y-35(=0)$ seen	A1	oe eg $(y=)-\frac{7}{5}$ and $(y=) 5$ with $5 y^{2}-18 y-35(=0)$ seen	
	$(-1.2,-1.4)$ and $(2,5)$ with $5 y^{2}-18 y-35(=0)$ seen	A1	oe eg $\left(-\frac{6}{5},-\frac{7}{5}\right)$ and $(2,5)$ with $5 y^{2}-18 y-35(=0)$ seen	
	Additional Guidance			
	Answers only (no valid working)			Zero
	Both solutions from scale drawing			5 marks
	$(2,5)$ is often seen without seeing any correct method			Zero
	Allow one miscopy for up to M3A0A0			

23	Alternative method 1		
	Replaces $\tan x$ with $\frac{\sin x}{\cos x}$ at least once in given expression	M1	$\text { eg } \frac{1}{\frac{\sin ^{2} x}{\cos ^{2} x}}-\frac{1}{\sin ^{2} x}$
	Correct steps leading to the single fraction $\frac{\cos ^{2} x-1}{\sin ^{2} x}$ or $\frac{\cos ^{2} x-1}{1-\cos ^{2} x}$ or $\frac{1-\sin ^{2} x-1}{\sin ^{2} x}$ or $\frac{\cos ^{2} x-\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x}$ or $\frac{-\sin ^{2} x}{\sin ^{2} x}$	M1dep	
	$\frac{\cos ^{2} x-1}{\sin ^{2} x}=\frac{-\sin ^{2} x}{\sin ^{2} x}=-1$ or $\frac{\cos ^{2} x-1}{1-\cos ^{2} x}=-1$ or $\frac{1-\sin ^{2} x-1}{\sin ^{2} x}=-1$ or $\frac{-\sin ^{2} x}{\sin ^{2} x}=-1$	A1	Must see all steps leading to -1

$\begin{gathered} 23 \\ \text { cont } \end{gathered}$	Alternative method 2			
	Replaces $\tan x$ with $\frac{\sin x}{\cos x}$ at least once in given expression Correct steps leading to the single fraction $\begin{aligned} & \frac{\sin ^{2} x\left(\cos ^{2} x-1\right)}{\sin ^{4} x} \\ & \text { or } \frac{-\sin ^{4} x}{\sin ^{4} x} \end{aligned}$	M1	eg $\frac{\sin ^{2} x-\frac{\sin ^{2} x}{\cos ^{2} x}}{\sin ^{2} x \frac{\sin ^{2} x}{\cos ^{2} x}}$	
		M1dep		
	$\begin{aligned} & \frac{\sin ^{2} x\left(\cos ^{2} x-1\right)}{\sin ^{4} x}=\frac{-\sin ^{4} x}{\sin ^{4} x}=-1 \\ & \text { or } \frac{-\sin ^{4} x}{\sin ^{4} x}=-1 \end{aligned}$	A1	Must see all steps leading to -1	
	Additional Guidance			
	Allow $\cos ^{2} \theta$ etc or $\cos ^{2}$ or c^{2} or $(\cos x)^{2}$ for $\cos ^{2} x$ etc			
	Condone $\cos x^{2}$ for $\cos ^{2} x$ etc			
	Only substituting values for x			Zero
	$\frac{\cos ^{2} x-1}{\sin ^{2} x}$ etc with no working			Zero
	Alt $2 \frac{\sin ^{2} x \cos ^{2} x-\sin ^{2} x}{\sin ^{4} x}$ with no further working			M1M0A0
	Any fully correct response that shows how the given expression is equal to -1 is awarded 3 marks$\begin{aligned} & \text { eg } \frac{1}{\frac{\sin ^{2} x}{\cos ^{2} x}}-\frac{1}{\sin ^{2} x}=\frac{\cos ^{2} x}{\sin ^{2} x}-\frac{1}{\sin ^{2} x}=\frac{1-\sin ^{2} x}{\sin ^{2} x}-\frac{1}{\sin ^{2} x} \\ & \quad=\frac{1}{\sin ^{2} x}-\frac{\sin ^{2} x}{\sin ^{2} x}-\frac{1}{\sin ^{2} x}=-1 \end{aligned}$			3 marks
	$\cot ^{2} x-\operatorname{cosec}^{2} x=-1$			3 marks

24	Alternative method 1		
	$12\left(x^{2}-5 x\right) \ldots$ or $12(x-2.5)^{2}$	M1	oe eg $12\left\{\left(x^{2}-5 x\right) \ldots\right\}$ or $12\left(x^{2}-5 x \ldots\right)$
	$\begin{aligned} & 12\left\{(x-2.5)^{2}-2.5^{2}\right\} \ldots \\ & \text { or } 12(x-2.5)^{2}-75 \ldots \end{aligned}$	M1dep	oe eg $12\left\{(x-2.5)^{2}-2.5^{2} \ldots\right\}$
	$\begin{aligned} & 12(x-2.5)^{2}-12 \times 2.5^{2}+5 \\ & \text { or } 12(x-2.5)^{2}-70 \end{aligned}$	M1dep	oe eg $12(x-2.5)^{2}-12 \times 2.5^{2}+12 \times \frac{5}{12}$
	$12\left(\frac{2 x-5}{2}\right)^{2}-12 \times 2.5^{2}+5$	M1dep	$\text { eg } 12\left(\frac{2 x-5}{2}\right)^{2}-12 \times 2.5^{2}+12 \times \frac{5}{12}$
	$3(2 x-5)^{2}-70$ or $a=3 \quad b=2 \quad c=-5 \quad d=-70$ or $3(5-2 x)^{2}-70$ or $a=3 \quad b=-2 \quad c=5 \quad d=-70$	A1	oe

24	Alternative method 2			
	$\begin{aligned} & 3\left(4 x^{2}-20 x\right) \ldots \\ & \text { or } 3(2 x-5)^{2} \ldots \end{aligned}$	M1	oe eg $3\left\{\left(4 x^{2}-20 x\right) \ldots\right\}$ or $3\left(4 x^{2}-20 x \ldots\right)$	
	$3\left\{(2 x-5)^{2}-5^{2}\right\} \ldots$ or $3(2 x-5)^{2}-75 \ldots$	M1dep	oe eg $3\left\{(2 x-5)^{2}-5^{2} \ldots\right\}$	
	$3\left\{(2 x-5)^{2}-5^{2}\right\}+5$	M1dep	oe eg $3\left\{(2 x-5)^{2}-5^{2}+\frac{5}{3}\right\}$	
	$3(2 x-5)^{2}-3 \times 5^{2}+5$	M1dep	oe eg $3(2 x-5)^{2}-3 \times 5^{2}+3 \times \frac{5}{3}$	
	$3(2 x-5)^{2}-70$ or $a=3 \quad b=2 \quad c=-5 \quad d=-70$ or $3(5-2 x)^{2}-70$ or $a=3 \quad b=-2 \quad c=5 \quad d=-70$	A1	oe	
	Additional Guidance			
	For M marks 2.5 may be seen as $\frac{5}{2}$			
	For M marks $(x-2.5)^{2}$ may be replaced by $(2.5-x)^{2}$ etc			
	Expansion of given form followed by trial and improvement eg1 $3(2 x-5)^{2}-70($ or $a=3 \quad b=2 \quad c=-5 \quad d=-70)$ eg2 Not fully correct			5 marks Zero

[^0]: Alternative methods 3 and 4 and Additional Guidance continue on the next two pages

