Level 2 Certificate Further Mathematics

Paper 2
Mark scheme

83602
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

M dep A method mark dependent on a previous method mark being awarded.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

1	Alternative method 1			
	$\frac{1}{2} \times 5 \times 6$ or $6 \times 5-\frac{1}{2} \times 6 \times 3-\frac{1}{2} \times 6 \times 2$ or $\frac{1}{2} \times 6 \times 3+\frac{1}{2} \times 6 \times 2$	M2	M1 Plots correct three points or draws correct triangle	
	15	A1		
	Alternative method 2			
	$\begin{aligned} & \frac{1}{2} \times 5 \times[6.1,6.5] \times \sin [70,74] \\ & \text { or } \\ & \frac{1}{2} \times 5 \times[6.5,6.9] \times \sin [61,65] \\ & \text { or } \\ & \frac{1}{2} \times[6.1,6.5] \times[6.5,6.9] \\ & \times \sin [43,47] \end{aligned}$	M2	Fully correct method with tolerances on measurements M1 Plots correct three points or draws correct triangle	
	15 with no evidence that rounding has been applied	A1	eg 14.9 seen in working	
	Additional Guidance			
	15 from counting squares			M2 A1
	Incorrect triangle drawn is zero unless recovered			
	Answer only of 15			M2 A1

\mathbf{Q}	Answer	Mark	Comments

2(a)	$x=2$	B1		
	Additional Guidance			
	$2=x$			B1
	$y=2$			B0
	2			B0

2(b)	-0.8 and 4.8 with no other answers	B2Both correct in either order B1 One correct and one incorrect or missing		
	The word 'and' is not needed If their answer has both -0.8 and 4.8 with no other solutions award B2 eg 4.8, -0.8 with no other solutions	B2		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3(a)	$\left(\frac{c}{a}, 0\right)$	B1	

3(b)	$-\frac{a}{b}$	B1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

mark scheme continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

4	Additional Guidance (Q4)	
	Answer only (3.4, 1.4)	M2 A2
	One value correct (possibly by drawing) with no incorrect working seen for that variable	M2 A1 A0
	If the same method is used for both x and y (eg equates coefficients and eliminates a variable), mark the attempt that favours the student	
	Alt 1 $\begin{array}{r} 6 x+9 y=33 \\ 6 x+4 y=26 \\ \hline 4 y=6 \end{array}$ is M1 M0 unless intention to subtract is seen (eg a subtraction symbol is seen or the word subtract is seen) which would then get M1 M1	
	Alts 2, 3 and 4 Allow rounding or truncating to 1dp or better for up to M1 M1 $\begin{aligned} & \text { eg (Alt 2) } y=3.6-0.6 x \\ & \quad 2(3.6-0.6 x)=13-3 x \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	$(1.4,3.4)$ is SC3 or M2 A2 if $x=3.4$ and $y=1.4$ seen in working	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

5	Always true Sometimes true Never true Sometimes true	B4	B1 for each correct answer
	Additional Guidance		
	More than one box	0 for	row
	Allow any unamb eg uses crosses	electi	a row
	Ignore working seen		

6	$\begin{aligned} & \frac{3}{2} \times(-2)-k \times(-2)^{4}+k \text { or } \\ & -3-16 k+k \text { or }-3-15 k \end{aligned}$	M1	oe Allow missing brackets even if not recovered eg $\frac{3}{2} \times-2-k \times-2^{4}+k$ or $-3+16 k+k$ or $-3+17 k$	
	$\begin{aligned} & -3-16 k+k=12 \text { or }-3-15 k=12 \\ & \text { or }-15 k=15 \end{aligned}$	A1	oe correct equation (brackets may be recovered) $\frac{3}{2} \times(-2)$ and $(-2)^{4}$ must be evaluated Implied by $k=-1$	
	-1	A1	$\text { SC2 } \frac{15}{17} \text { or } 0.88 \ldots \text { or } 0.9$	
	Additional Guidance			
	-1 with no errors seen (recovered bracket is not an error)			M1 A2
	Substituting $x=2$			M0 A0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Q	Answer	Mark	Comments

8	Alternative method 1		
	$\frac{5 \times-6+3 \times-2}{5+3}$ or $\frac{5 \times 4+3 \times 9}{5+3}$	M1	oe
	-4.5 or 5.875	A1	oe
	(-4.5, 5.875)	A1	$\begin{aligned} & \text { oe eg }\left(-\frac{9}{2}, \frac{47}{8}\right) \\ & \text { SC2 }(5.875,-4.5) \end{aligned}$
	Alternative method 2		
	$\begin{aligned} & \frac{3}{5+3} \times(-2--6) \text { or } 1.5 \\ & \text { or } \frac{3}{5+3} \times(9-4) \text { or } 1.875 \end{aligned}$	M1	$\begin{aligned} & \text { oe eg } \frac{3}{8} \times 4 \text { or } \frac{3}{8} \times 5 \\ & \quad \text { or } \frac{4}{8} \times 3 \text { or } \frac{5}{8} \times 3 \end{aligned}$
	-4.5 or 5.875	A1	oe
	(-4.5, 5.875)	A1	$\begin{aligned} & \text { oe eg }\left(-\frac{9}{2}, \frac{47}{8}\right) \\ & \text { SC2 }(5.875,-4.5) \end{aligned}$

Q	Answer	Mark	Comments

8	Alternative method 3			
	$\begin{aligned} & \frac{5}{5+3} \times(-2--6) \text { or } 2.5 \\ & \text { or } \frac{5}{5+3} \times(9-4) \text { or } 3.125 \end{aligned}$		M1	oe eg $\frac{5}{8} \times 4$ or $\frac{5}{8} \times 5$ or $\frac{4}{8} \times 5$
	-4.5 or 5.875		A1	oe
	(-4.5, 5.875)		A1	$\begin{aligned} & \text { oe eg }\left(-\frac{9}{2}, \frac{47}{8}\right) \\ & \text { SC2 }(5.875,-4.5) \end{aligned}$
	Alternative method 4			
	$\frac{x--6}{-2--6}=\frac{3}{5+3}$ or $\frac{-2-x}{-2--6}=\frac{5}{5+3}$ or $\frac{x--6}{-2-x}=\frac{3}{5}$	$\frac{y-4}{9-4}=\frac{3}{5+3}$ or $\frac{9-y}{9-4}=\frac{5}{5+3}$ or $\frac{y-4}{9-y}=\frac{3}{5}$	M1	oe eg both fractions inverted
	-4.5	5.875	A1	oe
	$(-4.5,5.875)$		A1	$\begin{aligned} & \text { oe eg }\left(-\frac{9}{2}, \frac{47}{8}\right) \\ & \text { SC2 }(5.875,-4.5) \end{aligned}$

MARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8	Alternative method 5		
	$\begin{aligned} & \frac{3}{5+3} \times \sqrt{(9-4)^{2}+(-2--6)^{2}} \\ & \times \sin \left(\tan ^{-1} \frac{9-4}{-2--6}\right) \text { or } 1.875 \end{aligned}$ or $\begin{aligned} & \frac{3}{5+3} \times \sqrt{(9-4)^{2}+(-2--6)^{2}} \\ & \times \cos \left(\tan ^{-1} \frac{9-4}{-2--6}\right) \text { or } 1.5 \end{aligned}$	M1	$\tan ^{-1} \frac{9-4}{-2--6}$ is the angle $D E$ makes with the horizontal (= 51.3...) $\sqrt{(9-4)^{2}+(-2--6)^{2}} \text { is } D E(=\sqrt{41} \text { or } 6.4 \ldots)$
	-4.5 or 5.875	A1	oe
	(-4.5, 5.875)	A1	$\begin{aligned} & \text { oe eg }\left(-\frac{9}{2}, \frac{47}{8}\right) \\ & \text { SC2 }(5.875,-4.5) \end{aligned}$

MARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 6

$\frac{5}{5+3} \times \sqrt{(9-4)^{2}+(-2--6)^{2}}$		$\tan ^{-1} \frac{9-4}{-2--6}$ is the angle DE makes with the horizontal (=51.3...) $\times \sin \left(\tan ^{-1} \frac{9-4}{-2--6}\right)$ or 3.125 or $\frac{5}{(9-4)^{2}+(-2--6)^{2}}$ is $D E(=\sqrt{41}$ or 6.4...) $5+\sqrt{(9-4)^{2}+(-2--6)^{2}}$ $\times \cos \left(\tan ^{-1} \frac{9-4}{-2--6}\right)$ or 2.5
-4.5 or 5.875	M1	
$(-4.5,5.875)$	A1	oe

Additional Guidance

$(-4.5,5.9)$ or $(-4.5,5.88)$ is M1 A1 A0 unless 5.875 seen in working
$(5.875,-4.5)$ is SC2
or M1 A1 A1 if $x=-4.5$ and $y=5.875$ seen in working
-4.5 in working that becomes 4.5 on answer line should not be regarded as choice so gains at least M1 A1

2 marks if one coordinate correct and 3 marks if both correct (possibly from accurate drawing or working with midpoints) with no incorrect working for that coordinate

Alts 5 and 6 also have equivalents where the angle $D E$ makes with the vertical (= 38.6... or 38.7) is used. Mark using the principles of alts 5 and 6 or escalate

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	Alternative method $1 \quad P B C$ in terms of x and in terms of y					
	$180-x$ or $360-(y+100+2 y+80)$ or $360-(3 y+180)$				M1	May be on diagram PBC (allow B)
	$\begin{aligned} & 180-x \\ & \text { and } \\ & 360-(y+100+2 y+80) \\ & \text { or } 360-(3 y+180) \end{aligned}$				M1	
	$180-x \text { and } 180-3 y$ and $x=3 y$				A1	Must have seen correct working for M1 M1
9	Both reasons given				A1	Must have M1 M1 (Co-)interior angles or allied angles (add up to 180°) and angles at a point (add up to 360°)
	Alternative method 2 PBC in terms of $x+$ reflex PBC in terms of $y=360$					
	$180-x$ or $y+100+2 y+80$ or $3 y+180$				M1	May be on diagram PBC (allow B) or reflex PBC
	$\begin{aligned} & 180-x+y+100+2 y+80=360 \\ & \text { or } 180-x+3 y+180=360 \end{aligned}$				M1	oe unsimplified correct equation
	Simplifies to $x=3 y$				A1	Must have seen correct working for M1 M1
	Both reasons given				A1	Must have M1 M1 (Co-)interior angles or allied angles (add up to 180°) and angles at a point (add up to 360°)

MARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	Alternative method $3 \quad x=180-P B C$ in terms of y		
	$\begin{aligned} & 360-(y+100+2 y+80) \\ & \text { or } 360-(3 y+180) \end{aligned}$	M1	May be on diagram PBC (allow B)
	$\begin{aligned} & x=180-(360-(y+100+2 y+80)) \\ & x=180-(360-(3 y+180)) \end{aligned}$	M1	oe unsimplified correct equation
	Simplifies to $x=3 y$	A1	Must have seen correct working for M1 M1
	Both reasons given	A1	Must have M1 M1 (Co-)interior angles or allied angles (add up to 180°) and angles at a point (add up to 360°)
	Alternative method $4 x+P B C=$	and	$P B C$ in terms of $y+P B C=360$
	$x+P B C=180$ or $y+100+2 y+80+P B C=360$ or $3 y+180+P B C=360$	M1	PBC (allow B)
	$x+P B C=180$ and $\begin{aligned} & y+100+2 y+80+P B C=360 \\ & \text { or } 3 y+180+P B C=360 \end{aligned}$	M1	
	$\begin{aligned} & x+P B C=180 \\ & \text { and } 3 y+P B C=180 \\ & \text { and } x=3 y \end{aligned}$	A1	Must have seen correct working for M1 M1
	Both reasons given	A1	Must have M1 M1 (Co-)interior angles or allied angles (add up to 180°) and angles at a point (add up to 360°)

mARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	Alternative method 5 (Produces CB to X)) $P B X=$ reflex $P B C$ in terms of $y-180$
	$\begin{aligned} & y+100+2 y+80 \\ & \text { or } 3 y+180 \end{aligned}$	M1	May be on diagram reflex $P B C$
	$y+100+2 y+80-180$ or $3 y+180-180$	M1	$P B X$
	Simplifies to $3 y$ and states $x=3 y$	A1	Must have seen correct working for M1 M1
	Both reasons given	A1	Must have M1 M1 Angles on a (straight) line (add up to 180) and alternate angles (are equal)
	Alternative method 6 (Produce	$Y)$	= reflex PBC in terms of $\boldsymbol{y} \mathbf{- 1 8 0}$
	$\begin{aligned} & y+100+2 y+80 \\ & \text { or } 3 y+180 \end{aligned}$	M1	May be on diagram reflex PBC (allow reflex B)
	$\begin{aligned} & y+100+2 y+80-180 \\ & \text { or } 3 y+180-180 \end{aligned}$	M1	CBY
	Simplifies to $3 y$ and states $x=3 y$	A1	Must have seen correct working for M1 M1
	Both reasons given	A1	Must have M1 M1 Angles on a (straight) line (add up to 180) and corresponding angles (are equal)

mark scheme continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	Alternative method 7 (Produces $C B$ to X) $\quad P B X=180-P B C$ in terms of y		
	$\begin{aligned} & 360-(y+100+2 y+80) \\ & \text { or } 360-(3 y+180) \end{aligned}$	M1	May be on diagram PBC (allow B)
	$\begin{aligned} & 180-(360-(y+100+2 y+80)) \\ & \text { or } 180-(360-(3 y+180)) \end{aligned}$	M1	PBX
	Simplifies to $3 y$ and states $x=3 y$	A1	Must have seen correct working for M1 M1
	All reasons given	A1	Must have M1 M1 Angles at a point and angles on a (straight) line (add up to 180) and alternate angles (are equal)
	Alternative method 8 (Produces	$Y)$	$Y=180-P B C$ in terms of y
	$\begin{aligned} & 360-(y+100+2 y+80) \\ & \text { or } 360-(3 y+180) \end{aligned}$	M1	May be on diagram PBC (allow B)
	$\begin{aligned} & 180-(360-(y+100+2 y+80)) \\ & \text { or } 180-(360-(3 y+180)) \end{aligned}$	M1	CBY
	Simplifies to $3 y$ and states $x=3 y$	A1	Must have seen correct working for M1 M1
	All reasons given	A1	Must have M1 M1 Angles at a point and angles on a (straight) line (add up to 180) and corresponding angles (are equal)

ADDITIONAL GUIDANCE FOR Q9 IS ON THE NEXT PAGE

\mathbf{Q}	Answer	Mark	Comments

	Additional Guidance (Q9)	
	Recovery of brackets is not allowed as it is a proof	
	Acceptable reasons must include the word 'angles' Angles at a point can be angles round a point	
	These reasons are not allowed: Alternating angles, alternative angles, angles in a circle, straight line, at a point, round a point, parallel lines	
	Other variations on these methods will be seen. Escalate if necessary.	
	Starting with $x=3 y$ or substituting values for x and y is zero unless M marks seen in working	

10(a)	$\begin{aligned} & (x-5)(x-2) \text { or }(x-5)(x+3) \\ & \text { or }(5-x)(2-x) \\ & \text { or }(5-x)(-x-3) \end{aligned}$	M1	oe factorisation	
	$\frac{x-2}{x+3}$ or $\frac{2-x}{-x-3}$	A1	oe numerator and den	both linear
	Additional Guidance			
	Correct answer followed by incorrect further work			M1 A0
	$\frac{x-2}{x+3}$ or $\frac{2-x}{-x-3}$ from incorrect method			M0 A0
	Allow fraction with correct factorisations and common factors crossed out			M1 A1
	Allow $x-2 / x+3$			M1 A1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| $\boldsymbol{w}^{2} x^{3} y^{2}\left(w^{3}+x^{3} y\right)$ | B1 A correct partial factorisation with at
 least one variable fully factorised
 eg1 $y^{2}\left(w^{5} x^{3}+w^{2} x^{6} y\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| eg2 $w^{2} x\left(w^{3} x^{2} y^{2}+x^{5} y^{3}\right)$ | |
| or a correct partial factorisation with all | |
| three variables as factors | |
| eg$w x y\left(w^{4} x^{2} y+w^{5} y^{2}\right)$
 or full common factor with one term in
 brackets correct
 $w^{2} x^{3} y^{2}\left(w^{3}+\ldots\right)$ or $w^{2} x^{3} y^{2}\left(\ldots+x^{3} y\right)$
 Must be two terms in each bracket | |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

11	$4 x^{2}$ or $3 p x^{2}$ or $4+3 p$	M1	May be seen in an expansion or a grid Allow unsimplified eg $3 x \times p x$	
	their $4\left(x^{2}\right)+$ their $3 p\left(x^{2}\right)=-23\left(x^{2}\right)$	M1dep	Correct or ft their expansion ft is equating their terms in x^{2} to $-23 x^{2}$ Must be at least two terms with at least one linear term in p Allow unsimplified eg $3 x \times p x+4 x^{2}=-23 x^{2}$	
	-9	A1		
	Additional Guidance			
	In this question, only consider terms in x^{2}			
	If only one term in x^{2} the maximum mark is M1			
	$4+3 p=-23$ followed by $7 p=-23$			M1 M1 A0

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

12(b)	Alternative method 4		
	(Second differences $=$) 12 or $6 n^{2}$ or $a=6$	Seen at least once and not contradicted	
	$\begin{aligned} & 3 a+b=45-14 \\ & \text { and } \\ & \text { substitutes } a=6 \end{aligned}$	oe eg1 $5 a+b=88-45$ and substitutes $a=6$ eg2 $7 a+b=143-88$ and substitutes $a=6$	
	$6 n^{2}+13 n-5$		
	Alternative method 5		
	(Second differences $=$) 12	Seen at least once and not contradicted	
	$\begin{aligned} & 14+(45-14)(n-1)+ \\ & 0.5 \times 12(n-1)(n-2) \end{aligned}$	Using $p+q(n-1)+0.5 r(n-1)(n-2)$ p is 1 st term q is 2 nd term - 1 st term r is second differences	
	$6 n^{2}+13 n-5$		
	Additional Guidance		
	Allow any letter or mixed letters eg $6 x^{2}+13 x-5$ or $6 n^{2}+13 x-5$		M1 M1 A1
	Allow $n=$ eg $n=6 n^{2}+13 x-5$		M1 M1 A1
	$6 n^{2}+13 n-5=0$ is M1 M1 A1 unless also seen with solutions which then scores M1 M1 A0		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

13	Alternative method 1		
	$a-b-2=0$ or $a+\frac{7}{2} b-\frac{49}{2}=0$	M1	oe equation Allow an unsimplified equation eg $a+b \times(-1)-2(-1)^{2}=0$ Missing brackets can be recovered
	$a-b-2=0$ and $a+\frac{7}{2} b-\frac{49}{2}=0$	M1	oe two equations Allow unsimplified equations
	$\frac{7}{2} a+a=7+\frac{49}{2}$ or $\frac{7}{2} b--b=\frac{49}{2}-2$ and a - their $b-2=0$	M1dep	oe dep on first M1 Correct method to form an equation in a or correct method to form an equation in b and substitutes to form an equation in a Their two equations must both contain a and b
	$(0,7)$	A1	SC4 Answer $(0,7)$ from $(2 x-7)(1+x)$ or $2 x^{2}+2 x-7 x-7$ or $2 x^{2}-5 x-7$

MARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 2

$(7-2 x)$ or $(1+x)$ or $(2 x-7)$ or $(-1-x)$ or $(x-3.5)$ or $(3.5-x)$ or $2 x^{2}+2 x-7 x-7$ or $2 x^{2}-5 x-7$	M1	oe Brackets not needed
$\begin{aligned} & (7-2 x)(1+x) \text { or }(2 x-7)(-1-x) \\ & \text { or } 7+7 x-2 x-2 x^{2} \text { or } 7+5 x-2 x^{2} \end{aligned}$	M1	$\begin{aligned} & \text { oe eg }-\left(2 x^{2}-5 x-7\right) \\ & y=\text { not needed } \end{aligned}$ Expansion not needed
Substitutes $x=0$ in their quadratic or selects the constant term from their quadratic	M1dep	dep on first M1 Expansion not needed for their quadratic but must be correct if attempted May be implied by the final answer
$(0,7)$	A1	SC4 Answer $(0,7)$ from $(2 x-7)(1+x)$ or $2 x^{2}+2 x-7 x-7$ or $2 x^{2}-5 x-7$

Alternative method 3

$b-2 \times 2 x$ or $b-4 x$	M1	Differentiates correctly
$b-2 \times 2 \times 1.25=0$ or $b-4 \times 1.25=0$ or $b=5$	M1	
$a+$ their $b \times(-1)-2 \times(-1)^{2}=0$ or		oe dep on first M1 $a+$ their $b \times\left(\frac{7}{2}\right)-2 \times\left(\frac{7}{2}\right)^{2}=0$
M1dep	Must have substituted a value into $b-4 x$ and equated to 0 Missing brackets can be recovered	
$(0,7)$	A1	SC4 Answer $(0,7)$ from $(2 x-7)(1+x)$ or $2 x^{2}+2 x-7 x-7$ or $2 x^{2}-5 x-7$

MARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

14	Alternative method 1		
	$180 \div(7+5)$ or 15	M1	oe
	($w=$) $7 \times$ their 15 or 105 or $(y=) 5 \times$ their 15 or 75	M1dep	oe May be seen on diagram M2 105:75
	$\frac{180-\text { their } w}{2}$ or $\frac{\text { their } y}{2}$	M1dep	oe dep on M1 M1
	37.5	A1	oe SC2 52.5
	Alternative method 2		
	$w+y=180 \text { and } 5 w=7 y$ or $w+\frac{5}{7} w=180$ or $y+\frac{7}{5} y=180$	M1	oe
	$(w=) \frac{180 \times 7}{12}$ or 105 or $(y=) \frac{180 \times 5}{12}$ or 75	M1dep	oe May be seen on diagram M2 105:75
	$\frac{180-\text { their } w}{2}$ or $\frac{\text { their } y}{2}$	M1dep	oe dep on M1 M1
	37.5	A1	oe SC2 52.5

mark scheme continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Q	Answer	Mark	Comments

15(b)	$\begin{aligned} & x^{2}(x-5)(=0) \text { or } x^{2}(5-x)(=0) \\ & \text { or }(x=) 0 \text { or }(x=) 5 \end{aligned}$	M1	$\begin{aligned} & \text { oe factorisation } \\ & \text { eg1 } \quad\left(x^{2}-0\right)(x-5) \\ & \text { eg2 } \quad x\left(x^{2}-5 x\right) \end{aligned}$	
	0 and 5 with no other solutions	A1		
	Additional Guidance			
	For A1, the word 'and' is not needed If their answer has both 0 and 5 with no other solutions award M1 A1 eg 0,5 with no other solutions			M1 A1
	0, 5, -5			M1 A0
	Either or both solutions seen embedded			M1 A0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$y x=8(w-x)$ or $y=\frac{8 w-8 x}{x}$	M1			
$y x=8 w-8 x$	M1dep	oe eg $y x-8 w+8 x=0$ Implies M1 M1		
$y x+8 x=8 w$ or $\frac{8 w}{y+8}$	or $x(y+8)=8 w$			
$x=\frac{8 w}{y+8}$	A1dep	oe dep on M1 M1 Implies M1 M1 M1		
Must have $x=$				
SC2 $x=\frac{8 w}{y+1}$			\quad SC1 $\frac{8 w}{y+1}$	oe eg $\frac{-8 w}{-y-8}$
:---	\quad			
:---				

Alternative method 2

$y=\frac{8 w}{x}-8$ or $y=\frac{8 w}{x}-\frac{8 x}{x}$	M1	
$y+8=\frac{8 w}{x}$	M1dep	oe eg $y+8-\frac{8 w}{x}=0$ Implies M1 M1
$y x+8 x=8 w$ or $x(y+8)=8 w$		
or $\frac{1}{y+8}=\frac{x}{8 w}$ or $\frac{8 w}{y+8}$	M1dep	oe dep on M1 M1 Implies M1 M1 M1
$x=\frac{8 w}{y+8}$	A1	oe eg $\frac{-8 w}{-y-8}$ Must have $x=$ SC2 $x=\frac{8 w}{y+1}$$\quad$ SC1 $\frac{8 w}{y+1}$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

18(a)	$y>45^{\circ}$	B1

Q	Answer	Mark	Comments

18(b)	$(p+1)^{2}+(p-1)^{2}$	M1	oe May be within a square root	
	$\begin{aligned} & p^{2}+p+p+1+p^{2}-p-p+1 \\ & \text { or } p^{2}+1+p^{2}+1 \end{aligned}$	M1	oe May be within a square root Implies M1 M1	
	$2 p^{2}+2$ or $2\left(p^{2}+1\right)$	A1	May be within a square root Must be simplified May be implied by final mark	
	$\frac{p+1}{\sqrt{2 p^{2}+2}}$	A1	Allow $a=b=1 \quad c=d=2$ SC2 $\frac{p+1}{\sqrt{(p+1)^{2}+(p-1)^{2}}}$	
	Additional Guidance			
	$\frac{p+1}{\sqrt{2 p^{2}+2}}$ and further incorrect work			M2 A1 A0
	Allow $1 p$ for p			
	Use of $\frac{\sin y}{\cos y}=\frac{p+1}{p-1}$ can be marked by the scheme eg $\begin{aligned} & (p-1)^{2} \sin ^{2} y=(p+1)^{2} \cos ^{2} y \\ & (p-1)^{2} \sin ^{2} y=(p+1)^{2}\left(1-\sin ^{2} y\right) \\ & \left((p-1)^{2}+(p+1)^{2}\right) \sin ^{2} y=(p+1)^{2} \end{aligned}$ First M1 gained here (M1 A1 A1 may subsequently be gained)			

\mathbf{Q}	Answer	Mark	Comments

| | Continuous curve with
 point of inflection, labelled P or (1, 2),
 in first quadrant
 and
 minimum point, labelled Q or (a, b),
 in fourth quadrant, with x-coordinate
 of $Q>x$-coordinate of P
 eg | For B3, allow the labelling of one
 coordinate as sufficient for each point
 B2 As B3 but not sufficiently labelled
 B1 Curve with point of inflection,
 labelled P or (1, 2), in first quadrant
 or
 curve with minimum point,
 labelled Q or (a, b), in fourth quadrant |
| :--- | :--- | :--- | :--- |
| B3 | For B1, allow labelling using one
 coordinate as sufficient
 SC2 As B3 but x-coordinate of $Q<$
 x-coordinate of P
 eg | |

\mathbf{Q}	Answer	Mark	Comments

19	Additional Guidance (Q19)	
	For B3, curve does not have to cross the x-axis after Q and does not have to cross the y-axis before P	
	For a stationary point, curve must not stop at the point	
	At P, the curve must change from concave upward to concave downward for B3 or B2 or vice-versa for B1 or SC2	
	Note that other non-stationary points of inflection may also be seen (up to B3 possible)	
	Curve may have horizontal asymptotes as $x \rightarrow \pm \infty$ (up to B3 possible)	
	Mark intention for stationary points, positioning of labels and smoothness of curve	
	More than 1 stationary point of inflection and/or more than 1 minimum point and/or maximum point(s) can score a maximum of B1	
	Labelling using a coordinate or coordinates may be seen by labelling on an axis or on axes (axes may also show other numbers)	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)\binom{a}{2}$ or $\binom{-a-6}{2 a+8}$	M 1	Allow $(-a-6 \quad 2 a+8)$		
$-a-6=a$ or $2 a+8=2$	M 1	oe linear equation(s) (not $a=-3)$ Implies M1 M1		
$-a-6=a$ and $2 a+8=2$	A1	oe equations (not $a=-3)$	\quad	At M1 M1 A0
:---				
Must show that their two linear equations				
do not have a common solution and No				
common solution $(a=-3)$ and Yes				
SC4 $\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)\binom{-3}{2}=\binom{-3}{2}$ and Yes				
SC3 $\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)\binom{-3}{2}=\binom{-3}{2}$				

Additional Guidance

$\binom{a}{2}\left(\begin{array}{cc}-1 & -3 \\ 2 & 4\end{array}\right)$ is first M0 unless recovered
In matrices, allow missing brackets or inclusion of 'fraction' lines
Only one equation can score a maximum of M1 M1 A0 A0

$a=-3$ with no correct working	Zero
$\binom{-a-6}{2 a+8}=\binom{a}{2}$ with no further valid work	M1 M0 A0 A0
The final A mark may be seen in various ways eg1 Solves both equations obtaining $a=-3$ each time and Yes (or shows that both equations simplify to $2 a=-6$ and Yes) eg2 Solves one equation obtaining $a=-3$ and shows by substitution that $a=-3$ satisfies the other equation and Yes eg3 Adds the two equations to obtain a correct statement and Yes $\begin{array}{r} -2 a-6=0 \\ 2 a+8=2 \\ \hline 2=2 \end{array}$	

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

22	Alternative method 1 Triangles VMB and VXM (M is the midpoint of BC)		
	$\begin{aligned} & 17^{2}-(16 \div 2)^{2} \text { or } 225 \\ & \text { or } 17^{2}=V M^{2}+(16 \div 2)^{2} \end{aligned}$	M1	oe
	$(V M=) \sqrt{17^{2}-(16 \div 2)^{2}}$ or $\sqrt{225}$ or 15	M1	Implies M1 M1 May be seen on diagram
	$\begin{aligned} & \cos x=\frac{22 \div 2}{\text { their } 15} \\ & \text { or } \sin x=\frac{\sqrt{15^{2}-(22 \div 2)^{2}}}{\text { their } 15} \\ & \text { or } \tan x=\frac{\sqrt{15^{2}-(22 \div 2)^{2}}}{22 \div 2} \end{aligned}$	M1dep	x is required angle dep on M1 M1 oe eg correct method using cosine rule or sine rule simplified to $\cos x=$ or $\sin x=$ or $90-\sin ^{-1} \frac{22 \div 2}{\text { their } 15}$
	42.8...	A1	Allow 43 with correct working SC2 Answer 36.8... or 36.9

mark scheme continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

22	Alternative method 2 Triangles BXM and VXB and VXM (M is the midpoint of BC)		
	$B X^{2}=(16 \div 2)^{2}+(22 \div 2)^{2} \text { or } 185$ and $17^{2}-\text { their } B X^{2}$ or $17^{2}=V X^{2}+$ their $B X^{2}$	M1	oe eg for $B X^{2}$ $B X^{2}=\left(\frac{1}{2} B D\right)^{2}=\frac{1}{4}\left(16^{2}+22^{2}\right)$
	$(V X=) \sqrt{17^{2}-(\text { their } B X)^{2}}$ or $\sqrt{104}$ or $2 \sqrt{26}$ or [10.19, 10.2]	M1	Implies M1 M1 May be seen on diagram
	$\begin{aligned} & \tan x=\frac{\text { their }[10.19,10.2]}{22 \div 2} \\ & \text { or } \sin x=\frac{\text { their }[10.19,10.2]}{\text { their } V M} \\ & \text { or } \cos x=\frac{22 \div 2}{\text { their } V M} \end{aligned}$	M1dep	x is required angle dep on M1 M1 oe eg correct method using cosine rule or sine rule simplified to $\cos x=$ or $\sin x=$ or $90-\tan ^{-1} \frac{22 \div 2}{\text { their [10.19, 10.2] }}$
	42.8...	A1	Allow 43 with correct working SC2 Answer 36.8... or 36.9

mark scheme continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

22	Alternative method 3 Triangles VMB and VMN (M is the midpoint of $B C, N$ is the midpoint of $A D$)		
	$\begin{aligned} & 17^{2}-(16 \div 2)^{2} \text { or } 225 \\ & \text { or } 17^{2}=V M^{2}+(16 \div 2)^{2} \end{aligned}$	M1	oe
	$(V M=) \sqrt{17^{2}-(16 \div 2)^{2}}$ or $\sqrt{225}$ or 15	M1	Implies M1 M1 May be seen on diagram
	$\begin{aligned} & \frac{1}{2} \times\left(180-\cos ^{-1}\right. \\ & \left.\frac{\text { their } 15^{2}+\text { their } 15^{2}-22^{2}}{2 \times \text { their } 15 \times \text { their } 15}\right) \end{aligned}$	M1dep	dep on M1 M1
	42.8...	A1	Allow 43 with correct working SC2 Answer 36.8... or 36.9
		ditional	idance
	Alt 2 3rd M1 their VM must be from	rrect me	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

23	Alternative method 1		
	$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ or $3\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	B1	
	$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	B1	
	their $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)(\times)$ their $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$	M1	Either order This mark cannot be implied Must have scored B1 or B2
	$\begin{aligned} & \left(\begin{array}{cc} -3 & 0 \\ 0 & -3 \end{array}\right) \text { or }-3\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \\ & \text { or } 3\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$	M1dep	Correctly multiplies their pair of 2 by 2 matrices
	$\begin{aligned} & \left(\begin{array}{cc} -3 & 0 \\ 0 & -3 \end{array}\right) \text { or }-3\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \\ & \text { or } 3\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$ and scale factor -3	A1	Must gain B1 B1 M1 M1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

23	Alternative method 2 Algebraic method			
	$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ or $3\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$		B1	
	$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$		B1	
	$\begin{aligned} & \text { their }\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)\binom{x}{y} \\ & =\binom{3 x}{3 y} \end{aligned}$	their $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)(x)$ $\binom{x}{y}=\binom{-x}{-y}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out
	their $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ (\times) their $\binom{3 x}{3 y}=$ $\binom{-3 x}{-3 y}$	their $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ (x) their $\binom{-x}{-y}=$ $\binom{-3 x}{-3 y}$	M1dep	Multiplications must be correctly worked out
	$\binom{-3 x}{-3 y}$ and scale factor -3		A1	Must gain B1 B1 M1 M1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 3 Unit square method

$\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ or $3\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	B1	
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$	B1	
$\begin{array}{ll} \text { their }\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)(\times) & \text { their }\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \\ \left(\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) & (\times)\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) \\ =\left(\begin{array}{lll} 3 & 0 & 3 \\ 0 & 3 & 3 \end{array}\right) & =\left(\begin{array}{ccc} -1 & 0 & -1 \\ 0 & -1 & -1 \end{array}\right) \end{array}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out May be seen as three products
	M1dep	Multiplications must be correctly worked out May be seen as three products
$\left(\begin{array}{ccc} -3 & 0 & -3 \\ 0 & -3 & -3 \end{array}\right)$ and scale factor -3	A1	Must gain B1 B1 M1 M1 May be seen as three 2 by 1 matrices

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

23	Additional Guidance (Q23)	
	If both matrices are incorrect	Zero
	Matrices must be used - ignore diagrams	
	In matrices, allow missing brackets or inclusion of 'fraction' lines	
	Alt 1 B2 gained then $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$ stated	$\begin{aligned} & \text { B2 M0 } \\ & \text { M0 A0 } \end{aligned}$
	Allow 'enlargement -3 ' for 'scale factor -3 ' Do not allow '-3' for 'scale factor -3 '	
	Scale factor -3 with no valid working	Zero
	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$ scores B1 but does not score M1 M1 for the multiplication of two matrices with B1 scored	
	Alt 3 May also see working for ($\left.\begin{array}{l}0 \\ 0\end{array}\right)$	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

26(a)	Alternative method 1 (LHS \rightarrow RHS)		
	$\sin ^{2} x-3\left(1-\sin ^{2} x\right)$	M1	Must see ($\left.1-\sin ^{2} x\right)$
	$\sin ^{2} x-3+3 \sin ^{2} x=4 \sin ^{2} x-3$	A1	Must see correct expansion SC1 Correct rearrangement of given identity to $3 \sin ^{2} x+3 \cos ^{2} x=3$ and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$ and $\sin ^{2} x+\cos ^{2} x=1$
	Alternative method 2 (LHS \rightarrow RHS)		
	$\begin{aligned} & 1-\cos ^{2} x-3 \cos ^{2} x=1-4 \cos ^{2} x \\ & =1-4\left(1-\sin ^{2} x\right) \end{aligned}$	M1	Must see (1- $\left.\cos ^{2} x\right)$ and $\left(1-\sin ^{2} x\right)$
	$1-4+4 \sin ^{2} x=4 \sin ^{2} x-3$	A1	Must see correct expansion SC1 Correct rearrangement of given identity to $3 \sin ^{2} x+3 \cos ^{2} x=3$ and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$ and $\sin ^{2} x+\cos ^{2} x=1$
	Alternative method 3 (RHS \rightarrow LH		
	$4 \sin ^{2} x-3\left(\sin ^{2} x+\cos ^{2} x\right)$	M1	Must see ($\left.\sin ^{2} x+\cos ^{2} x\right)$
	$\begin{aligned} & 4 \sin ^{2} x-3 \sin ^{2} x-3 \cos ^{2} x \\ & =\sin ^{2} x-3 \cos ^{2} x \end{aligned}$	A1	Must see correct expansion SC1 Correct rearrangement of given identity to $3 \sin ^{2} x+3 \cos ^{2} x=3$ and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$ and $\sin ^{2} x+\cos ^{2} x=1$

MARK SCHEME CONTINUES ON THE NEXT PAGE

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

26(a)	Alternative method 4 (RHS \rightarrow LHS)		
	$\begin{aligned} & 4\left(1-\cos ^{2} x\right)-3=4-4 \cos ^{2} x-3 \\ & =1-4 \cos ^{2} x \\ & =\sin ^{2} x+\cos ^{2} x-4 \cos ^{2} x \end{aligned}$	M1	Must see $\left(1-\cos ^{2} x\right)$ and $\sin ^{2} x+\cos ^{2} x$ and correct expansion
	$=\sin ^{2} x-3 \cos ^{2} x$	A1	SC1 Correct rearrangement of given identity to $3 \sin ^{2} x+3 \cos ^{2} x=3$ and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$ and $\sin ^{2} x+\cos ^{2} x=1$
	Alternative method 5 (LHS and RHS \rightarrow common expression)		
	$1-\cos ^{2} x-3 \cos ^{2} x=1-4 \cos ^{2} x$ and $\begin{aligned} & 4\left(1-\cos ^{2} x\right)-3=4-4 \cos ^{2} x-3 \\ & =1-4 \cos ^{2} x \end{aligned}$	B2	Must see $\left(1-\cos ^{2} x\right)$ and correct expansion SC1 Correct rearrangement of given identity to $3 \sin ^{2} x+3 \cos ^{2} x=3$ and $3\left(\sin ^{2} x+\cos ^{2} x\right)=3$ and $\sin ^{2} x+\cos ^{2} x=1$

ADDITIONAL GUIDANCE FOR Q26(a) IS ON THE NEXT PAGE

Q	Answer	Mark	Comments

Additional Guidance (Q26(a))

As shown in the mark scheme, allow = signs but they may be seen (correctly) as the identity symbol
= signs may be implied (eg working down the page, line by line)
To give M1 the working must not need any further identities applying
The other side of the identity may be seen throughout working in Alts 1 to 4 However, full working on one side of the identity is needed for M1 A1
eg (Alt 2) $1-\cos ^{2} x-3 \cos ^{2} x=4 \sin ^{2} x-3$
$1-4 \cos ^{2} x=4 \sin ^{2} x-3$
$1-4\left(1-\sin ^{2} x\right)=4 \sin ^{2} x-3$
$1-4+4 \sin ^{2} x=4 \sin ^{2} x-3$
(with $4 \sin ^{2} x-3=4 \sin ^{2} x-3$ it would be M1 A1)
26(a)
Other examples may be seen, escalate if necessary
Allow any variable or mixed variables or no variables
Allow $(\sin x)^{2}$ for $\sin ^{2} x$ and $(\cos x)^{2}$ for $\cos ^{2} x$
Allow s^{2} for $\sin ^{2} x$ and c^{2} for $\cos ^{2} x$
Do not allow $\sin x^{2}$ for $\sin ^{2} x$ (but could still gain M1)
eg1 Alt $1 \sin ^{2} x-3\left(1-\sin ^{2} x\right)$
$=\sin ^{2} x-3+3 \sin x^{2}=4 \sin x^{2}-3$
A0
eg1 Alt $1 \sin x^{2}-3\left(1-\sin ^{2} x\right)$
M0
$=\sin ^{2} x-3+3 \sin x^{2}=4 \sin x^{2}-3$
A0

Do not allow recovery of missing brackets as this is a proof
SC1 Instead of factorisation, they can divide by 3
Other examples of SC1 may be seen where the identity is assumed to be correct and correct working with use of $\sin ^{2} x+\cos ^{2} x=1$ is seen

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

26(b)	Alternative method 1		
	$\sin ^{2} x=\frac{3}{4}$ or $\sin x=\frac{\sqrt{3}}{2}$ or $\sin x=\sqrt{\frac{3}{4}}$ or 60 or 120	M1	oe eg $(\sin x)^{2}=\frac{3}{4}$ Allow 0.86... or 0.87 for $\frac{\sqrt{3}}{2}$ Must have $\sin ^{2} x=$ or $\sin x=$ or $\sin ^{-1}$ Allow s for $\sin x$ Do not allow $\sin x^{2}$ for $\sin ^{2} x$ but may be recovered
	$\sin x=-\frac{\sqrt{3}}{2} \text { or } \sin x=-\sqrt{\frac{3}{4}}$ or 240 or 300 or -60	M1	oe $\text { Allow }-0.86 \ldots \text { or }-0.87 \text { for }-\frac{\sqrt{3}}{2}$
	60 and 120 and 240 and 300 with no other angles in range	A2	A1 60 and 120 or 240 and 300
	Alternative method 2		
	$\tan ^{2} x=3 \text { or } \tan x=\sqrt{3}$ or 60 or 240	M1	oe eg $(\tan x)^{2}=3$ Allow 1.73... for $\sqrt{3}$ Must have $\tan ^{2} x=$ or $\tan x=$ or $\tan ^{-1}$ Allow t for $\tan x$ Do not allow $\tan x^{2}$ for $\tan ^{2} x$ but may be recovered
	$\tan x=-\sqrt{3}$ or 120 or 300 or -60	M1	Allow -1.73... for $-\sqrt{3}$
	60 and 120 and 240 and 300 with no other angles in range	A2	A1 60 and 240 or 120 and 300

\mathbf{Q}	Answer	Mark	Comments

26(b)	Alternative method 3		
	$\cos ^{2} x=\frac{1}{4}$ or $\cos x=\frac{1}{2}$ or $\cos x=\sqrt{\frac{1}{4}}$ or 60 or 300	M1	oe eg $(\cos x)^{2}=\frac{1}{4}$ Must have $\cos ^{2} x=$ or $\cos x=$ or $\cos ^{-1}$ Allow c for $\cos x$ Do not allow $\cos x^{2}$ for $\cos ^{2} x$ but may be recovered
	$\cos x=-\frac{1}{2} \quad \text { or } \cos x=-\sqrt{\frac{1}{4}}$ or 120 or 240	M1	oe
	60 and 120 and 240 and 300 with no other angles in range	A2	A1 60 and 300 or 120 and 240

\mathbf{Q}	Answer	Mark	Comments

26(b)	Additional Guidance (Q26(b))	
	Ignore any solutions outside of $0<x<360$ ie 0 and 360 are outside the range and can be ignored	
	All four solutions with extra solutions in range, $0<x<360$, are penalised one accuracy mark $\text { eg } 60 \begin{array}{llllll} & 90 & 120 & 150 & 240 & 300 \end{array}$ Only penalise extra solutions in range when all four correct solutions are given	M1 M1 A1
	Answer line blank, award any marks gained from working lines	
	If angles are found in working lines but only some are listed on answer line award any method marks gained from the working lines award any accuracy marks gained from the answer line eg1 Working lines $\sin x= \pm \frac{\sqrt{3}}{2} \quad 60$ and 120 and 240 and 300 Answer line 60 and 120 and 240 eg2 Working lines $\tan x=\sqrt{3} \quad 60240$ Answer line 60 eg3 Working lines $\sin x=\frac{\sqrt{3}}{2} \quad 60 \quad 120 \quad \sin x=-\frac{\sqrt{3}}{2} \quad 300$ Answer line 300	M1 M1 A1 M1 M0 A0 M1 M1 A0
	Answers only can score up to 4 marks	
	M1 M0 A1 or M0 M1 A1 are possible $\begin{array}{llll}\text { eg1 } & \sin x=\frac{\sqrt{3}}{2} & 60 & 120 \\ \text { eg2 } & \sin x=-\frac{\sqrt{3}}{2} & 240 & 300\end{array}$	M1 M0 A1 M0 M1 A1
	Embedded answers can score up to M1 M1 A0	
	Working in rads or grads can score M marks if method seen	

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

