

AQA Qualifications

Level 2 Certificate Further Mathematics

Paper 2 Mark scheme

83602 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

- M Method marks are awarded for a correct method which could lead to a correct answer.
- **M dep** A method mark dependent on a previous method mark being awarded.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **B dep** A mark that can only be awarded if a previous independent mark has been awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- **oe** Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
- [*a*, *b*] Accept values between *a* and *b* inclusive.
- **3.14...** Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments		
	Alternative method 1				
	$\frac{1}{2} \times 5 \times 6$		Fully correct method		
	or		M1 Plots correct three points		
	$6 \times 5 - \frac{1}{2} \times 6 \times 3 - \frac{1}{2} \times 6 \times 2$	M2	or draws correct triangle		
	or				
	$\frac{1}{2} \times 6 \times 3 + \frac{1}{2} \times 6 \times 2$				
	15	A1			
	Alternative method 2				
1	1/2 × 5 × [6.1, 6.5] × sin [70, 74]		Fully correct method with tole measurements	rances on	
•	or				
	1/2 × 5 × [6.5, 6.9] × sin [61, 65]	M2	or draws correct three points		
	or				
	1/2 × [6.1, 6.5] × [6.5, 6.9]				
	× sin [43, 47]				
	15 with no evidence that rounding has been applied	A1	eg 14.9 seen in working		
	Additional Guidance				
	15 from counting squares			M2 A1	
	Incorrect triangle drawn is zero unless	recovered	l		
	Answer only of 15			M2 A1	

Q	Answer	Mark	Comments	
	<i>x</i> = 2	B1		
Additional Guidance				
2(a)	2 = x			B1
	y = 2			B0
	2			B0

	–0.8 and 4.8 with no other answers	B2	Both correct in either order B1 One correct and one inco missing	rrect or
2(b)	(b) Additional Guidance			
	The word 'and' is not needed			
	If their answer has both –0.8 and 4.8 with no other solutions award B2			
	eg 4.8, –0.8 with no other solutions B2			

Q	Answer	Mark	Comments	
	$-3 \le f(x) \le 6$ or $6 \ge f(x) \ge -3$ or [-3, 6]	B2	oe B1 $f(x) \ge -3$ or $f(x) \le 6$ on their own or embedded within an interval for $f(x)$ or only -3 and 6 chosen	
	Ad	ditional G	uidance	
	Allow as two inequalities $f(x) \ge -3$ $f(x) \le 6$ -3 to 6 inclusive $f(x)$ may be replaced by f or y or $x^2 - 4x + 1$ for B2 and B1(c)B1 may be seen with an incorrect inequality $eg1 -3 < f(x) \le 6$			
2(c)				
	$eg2 -3 \le f(x) \le 6$		B1	
	eg3 $-3 \le f(x) \le 5$		B1	
	For B1 ignore incorrect notation if only	–3 and 6 c	hosen	
	eg1 $-3 \le x \le 6$		B1	
	eg2 $-3 < x \le 6$			
	eg3 -3 to 6 eg4 -3 to 6 = 9 (working out a statistical range) eg5 $-3 \ge f(x) \ge 6$			
	ego –3, b			
	{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6}		B0	

3(a)	$(\frac{c}{a},0)$	B1	
------	-------------------	----	--

3(b)	$-\frac{a}{b}$	B1	
------	----------------	----	--

Q	Ans	swer	Mark	Comments
	Alternative meth	od 1 Equates coe	efficients a	and eliminates a variable
	4x + 6y = 22 and 9x + 6y = 39	6x + 9y = 33 and 6x + 4y = 26	M1	oe Equates coefficients of one variable Allow one term error
	4x - 9x = 22 - 39 or $-5x = -17$	9y - 4y = 33 - 26 or 5y = 7	M1dep	oe Eliminates a variable Must be correct method for their equations Unless correctly eliminated, intention to subtract (or add if appropriate) must be seen with the result of their subtraction
	(<i>x</i> =) 3.4	(<i>y</i> =) 1.4	A1	oe eg $x = \frac{17}{5}$
4	(3.4, 1.4)		A1	oe eg $(\frac{17}{5}, \frac{7}{5})$ SC3 (1.4, 3.4) oe
	Alternative method 2 Makes a variable the subject in first equation			
	$y = \frac{11}{3} - \frac{2}{3}x$	x = 5.5 – 1.5y	M1	oe eg $x = \frac{11-3y}{2}$ Makes <i>y</i> or <i>x</i> the subject Allow one term error
	$2(\frac{11}{3} - \frac{2}{3}x) = 13 - 3x$	2 <i>y</i> = 13 – 3(5.5 –1.5 <i>y</i>)	M1dep	oe Eliminates a variable Must be correct method for their equations
	(<i>x</i> =) 3.4	(<i>y</i> =) 1.4	A1	oe eg $x = \frac{17}{5}$
	(3.4, 1.4)		A1	oe eg $(\frac{17}{5}, \frac{7}{5})$ SC3 (1.4, 3.4) oe

Q	Answer	Mark	Comments
---	--------	------	----------

	Alternative method	od 3 Makes a var	iable the s	subject in second equation	
	<i>y</i> = 6.5 – 1.5 <i>x</i>	$x = \frac{13}{3} - \frac{2}{3}y$	M1	oe eg $y = \frac{13 - 3x}{2}$ Makes <i>y</i> or <i>x</i> the subject Allow one term error	
	2x + 3(6.5 - 1.5x) = 11	$2(\frac{13}{3} - \frac{2}{3}y) + 3y = 11$	M1dep	oe Eliminates a variable Must be correct method for their equations	
	(<i>x</i> =) 3.4	(<i>y</i> =) 1.4	A1	oe eg $x = \frac{17}{5}$	
	(3.4, 1.4)		A1	oe eg $(\frac{17}{5}, \frac{7}{5})$ SC3 (1.4, 3.4) oe	
4	Alternative method 4 Makes same variable the subject in both equations				
	$y = \frac{11}{3} - \frac{2}{3}x$ or $y = 6.5 - 1.5x$	x = 5.5 - 1.5y or $x = \frac{13}{3} - \frac{2}{3}y$	M1	oe eg $y = \frac{13 - 3x}{2}$ Makes <i>y</i> or <i>x</i> the subject Allow one term error	
	$\frac{11}{3} - \frac{2}{3}x = $ 6.5 - 1.5x	5.5 - 1.5y = $\frac{13}{3} - \frac{2}{3}y$	M1dep	oe Eliminates a variable Must be correct method for their equations	
	(<i>x</i> =) 3.4	(<i>y</i> =) 1.4	A1	oe eg $x = \frac{17}{5}$	
	(3.4, 1.4)		A1	oe eg $(\frac{17}{5}, \frac{7}{5})$ SC3 (1.4, 3.4) oe	

ADDITIONAL GUIDANCE FOR Q4 IS ON THE NEXT PAGE

Q	Answer	Mark	Comments
---	--------	------	----------

	Additional Guidance (Q4)					
	Answer only (3.4, 1.4)	M2 A2				
	One value correct (possibly by drawing) with no incorrect working seen for that variable	M2 A1 A0				
	If the same method is used for both x and y (eg equates coefficients and eliminates a variable), mark the attempt that favours the student					
4	Alt 1 $6x + 9y = 33$ $\frac{6x + 4y = 26}{4y = 6}$					
	is M1 M0 unless intention to subtract is seen (eg a subtraction symbol is seen or the word subtract is seen) which would then get M1 M1					
	Alts 2, 3 and 4					
	Allow rounding or truncating to 1dp or better for up to M1 M1					
	eg (Alt 2) $y = 3.6 - 0.6x$	M1				
	2(3.6 - 0.6x) = 13 - 3x	M1				
	(1.4, 3.4) is SC3 or M2 A2 if $x = 3.4$ and $y = 1.4$ seen in working					

Q	Answer	Mark	Comments

	Always true Sometimes true Never true Sometimes true	B4	B1 for each correct answer	
5	Additional Guidance			
	More than one box selected in a row is B0 for that row			
	Allow any unambiguous indication of a selection in a row eg uses crosses instead of ticks			
	Ignore working seen and mark the boxes			

	$\frac{3}{2} \times (-2) - k \times (-2)^4 + k$ or -3 - 16k + k or -3 - 15k	M1	oe Allow missing brackets even is recovered eg $\frac{3}{2} \times -2 - k \times -2^4 + k$ or $-3 + 16k + k$ or $-3 + 17k$	f not
6	-3 - 16k + k = 12 or $-3 - 15k = 12or -15k = 15$	A1	oe correct equation (brackets recovered) $\frac{3}{2} \times (-2)$ and $(-2)^4$ must be even Implied by $k = -1$	may be valuated
	-1	A1	SC2 $\frac{15}{17}$ or 0.88 or 0.9	
	Additional Guidance			
	-1 with no errors seen (recovered bracket is not an error)			M1 A2
	Substituting $x = 2$			M0 A0

Q	Answer	Mark	Comments	
	$\frac{8}{27}x^9y^3$ or $\frac{8x^9y^3}{27}$	B2	oe B1 Two of the three compone and simplified	ents correct
	Ad	ditional G	Guidance	
	Allow multiplication signs for B2 and B	1		
	Allow $0.\dot{2}9\dot{6}$ or $0.\dot{2}9\dot{6}$ as a correct component $0.296x^9y^3$			
7	$\frac{8}{27}x^9y^3$ followed by incorrect further work (only penalise B2 responses)			
	$8x^9y^3 \div 27$		B1	
	$(\frac{2}{3})^{3} x^{9} y^{3}$ $\frac{8}{27} x^{9}$ $8x^{9} \times 27y^{3}$			
	$\frac{8}{27}x^9 + y^3$			B0

Q	Answer	Mark	Comments		
	•				
	Alternative method 1				
	$\frac{5 \times -6 + 3 \times -2}{5 + 3} \text{or} \frac{5 \times 4 + 3 \times 9}{5 + 3}$	M1	ое		
	-4.5 or 5.875	A1	oe		
	(-4.5, 5.875)	A1	oe eg $(-\frac{9}{2}, \frac{47}{8})$		
			SC2 (5.875, -4.5)		
8	Alternative method 2				
	$\frac{3}{5+3}$ × (-26) or 1.5	M1	oe eg $\frac{3}{8} \times 4$ or $\frac{3}{8} \times 5$		
	or $\frac{3}{5+3} \times (9-4)$ or 1.875		or $\frac{4}{8} \times 3$ or $\frac{5}{8} \times 3$		
	-4.5 or 5.875	A1	oe		
	(-4.5, 5.875)	A1	oe eg $(-\frac{9}{2},\frac{47}{8})$		
			SC2 (5.875, -4.5)		

MARK SCHEME CONTINUES ON THE NEXT PAGE

Q	Ans	wer	Mark	Comments
	Alternative metho	od 3		
	$\frac{5}{5+3} \times (-26)$ or $\frac{5}{5+3} \times (9 - 4)$	or 2.5) or 3.125	M1	oe eg $\frac{5}{8} \times 4$ or $\frac{5}{8} \times 5$ or $\frac{4}{8} \times 5$
	-4.5 or 5.875		A1	ое
	(–4.5, 5.875)		A1	oe eg $\left(-\frac{9}{2}, \frac{47}{8}\right)$
	Alternative metho	od 4		302 (3.873, -4.3)
				an an bath fractions invested
o	$\frac{x6}{-26} = \frac{3}{5 + 3}$	$\frac{y-4}{9-4} = \frac{3}{5+3}$		de leg both fractions inverted
	or	or		
	$\frac{-2-x}{-26} = \frac{5}{5+3}$	$\frac{9-y}{9-4} = \frac{5}{5+3}$	M1	
	or	or		
	$\frac{x6}{-2-x} = \frac{3}{5}$	$\frac{y-4}{9-y} = \frac{3}{5}$		
	-4.5	5.875	A1	oe
	(-4.5, 5.875)		A1	oe eg $\left(-\frac{9}{2}, \frac{47}{8}\right)$ SC2 (5.875, -4.5)

Q	Answer	Mark	Comments
	Alternative method 5		
8	$\frac{3}{5+3} \times \sqrt{(9-4)^2 + (-26)^2}$ $\times \sin(\tan^{-1}\frac{9-4}{-26}) \text{ or } 1.875$ or $\frac{3}{5+3} \times \sqrt{(9-4)^2 + (-26)^2}$ $\times \cos(\tan^{-1}\frac{9-4}{-26}) \text{ or } 1.5$	M1	$\tan^{-1} \frac{9-4}{-26}$ is the angle <i>DE</i> makes with the horizontal (= 51.3) $\sqrt{(9-4)^2 + (-26)^2}$ is <i>DE</i> (= $\sqrt{41}$ or 6.4)
	-4.5 or 5.875	A1	oe
	(-4.5, 5.875)	A1	oe eg $\left(-\frac{9}{2}, \frac{47}{8}\right)$ SC2 (5.875, -4.5)

Q	Answer	Mark	Comments		
	•				
	Alternative method 6				
	$\frac{5}{5+3} \times \sqrt{(9-4)^2 + (-26)^2}$ $\times \sin(\tan^{-1}\frac{9-4}{-26}) \text{ or } 3.125$ or $\frac{5}{5+3} \times \sqrt{(9-4)^2 + (-26)^2}$ $\times \cos(\tan^{-1}\frac{9-4}{-26}) \text{ or } 2.5$	M1	$\tan^{-1} \frac{9-4}{-26}$ is the angle <i>DE</i> the horizontal (= 51.3) $\sqrt{(9-4)^2 + (-26)^2}$ is <i>DE</i> (=	E makes with = $\sqrt{41}$ or 6.4)	
	-4.5 or 5.875	A1	ое		
8	(-4.5, 5.875)	A1	oe eg $\left(-\frac{9}{2}, \frac{47}{8}\right)$ SC2 (5.875, -4.5)		
	Additional Guidance				
	(-4.5, 5.9) or (-4.5, 5.88) is M1 A1 A0 unless 5.875 seen in working				
	(5.875, -4.5) is SC2 or M1 A1 A1 if $x = -4.5$ and $y = 5.875$ seen in working				
	-4.5 in working that becomes 4.5 on answer line should not be regarded as choice so gains at least M1 A1				
	2 marks if one coordinate correct and 3 marks if both correct (possibly from accurate drawing or working with midpoints) with no incorrect working for that coordinate				
	Alts 5 and 6 also have equivalents whe (= 38.6 or 38.7) is used. Mark using t	ere the ang the princip	gle <i>DE</i> makes with the vertical les of alts 5 and 6 or escalate		

Q	Answer	Mark	Comments	
	I			
	Alternative method 1 PBC in terr	ns of <i>x</i> an	id in terms of <i>y</i>	
	180 - x or 360 - (y + 100 + 2y + 80) or 360 - (3y + 180)	M1	May be on diagram <i>PBC</i> (allow <i>B</i>)	
	180 - x and 360 - (y + 100 + 2y + 80) or $360 - (3y + 180)$	M1		
	180 - x and $180 - 3yand x = 3y$	A1	Must have seen correct working for M1 M1	
-	Both reasons given		Must have M1 M1	
9		A1	(Co-)interior angles or allied angles (add up to 180°)	
			and angles at a point (add up to 360°)	
	Alternative method 2 <i>PBC</i> in terms of x + reflex <i>PBC</i> in terms of y = 360			
	180 <i>- x</i>		May be on diagram	
	or y + 100 + 2y + 80 or 3y + 180	M1	<i>PBC</i> (allow <i>B</i>) or reflex <i>PBC</i>	
	180 - x + y + 100 + 2y + 80 = 360 or $180 - x + 3y + 180 = 360$	M1	oe unsimplified correct equation	
	Simplifies to $x = 3y$	A1	Must have seen correct working for M1 M1	
	Both reasons given		Must have M1 M1	
		A1	(Co-)interior angles or allied angles (add up to 180°)	
			and angles at a point (add up to 360°)	

Q	Answer	Mark	Comments	
	Alternative method 3 $x = 180 - F$	PBC in ter	ms of y	
	360 - (y + 100 + 2y + 80)	N/1	May be on diagram	
	or 360 – (3 <i>y</i> + 180)		PBC (allow B)	
	x = 180 - (360 - (y + 100 + 2y + 80))	M1	oe unsimplified correct equation	
	x = 180 - (360 - (3y + 180))			
	Simplifies to $x = 3y$	A1	Must have seen correct working for M1 M1	
	Both reasons given		Must have M1 M1	
		A1	(Co-)interior angles or allied angles (add up to 180°)	
			and angles at a point (add up to 360°)	
	Alternative method 4 $x + PBC = 180$ and reflex <i>PBC</i> in terms of $y + PBC = 360$			
0	<i>x</i> + <i>PBC</i> = 180		PBC (allow B)	
5	or <i>y</i> + 100 + 2 <i>y</i> + 80 + <i>PBC</i> = 360	M1		
	or 3 <i>y</i> + 180 + <i>PBC</i> = 360			
	<i>x</i> + <i>PBC</i> = 180			
	and	N/1		
	<i>y</i> + 100 + 2 <i>y</i> + 80 + <i>PBC</i> = 360			
	or 3 <i>y</i> + 180 + <i>PBC</i> = 360			
	<i>x</i> + <i>PBC</i> = 180		Must have seen correct working for M1 M1	
	and 3 <i>y</i> + <i>PBC</i> = 180	A1		
	and $x = 3y$			
	Both reasons given		Must have M1 M1	
		A1	(Co-)interior angles or allied angles (add up to 180°)	
			and angles at a point (add up to 360°)	

Q	Answer	Mark	Comments			
	Alternative method 5 (Produces CB	to X) P	BX = reflex PBC in terms of y – 180			
	y + 100 + 2y + 80 or 3y + 180	M1	May be on diagram reflex <i>PBC</i>			
	y + 100 + 2y + 80 – 180 or 3y + 180 – 180	M1	PBX			
	Simplifies to $3y$ and states $x = 3y$	A1	Must have seen correct working for M1 M1			
	Both reasons given	A1	Must have M1 M1 Angles on a (straight) line (add up to 180) and alternate angles (are equal)			
9	Alternative method 6 (Produces <i>PB</i> to <i>Y</i>) <i>CBY</i> = reflex <i>PBC</i> in terms of $y - 180$					
	y + 100 + 2y + 80 or 3y + 180	M1	May be on diagram reflex <i>PBC</i> (allow reflex <i>B</i>)			
	y + 100 + 2y + 80 – 180 or 3y + 180 – 180	M1	СВҮ			
	Simplifies to $3y$ and states $x = 3y$	A1	Must have seen correct working for M1 M1			
	Both reasons given	A1	Must have M1 M1 Angles on a (straight) line (add up to 180) and corresponding angles (are equal)			

Q	Answer	Mark	Comments	
	Alternative method 7 (Produces CB	to X) P	<i>BX</i> = 180 – <i>PBC</i> in terms of <i>y</i>	
	360 - (y + 100 + 2y + 80) or 360 - (3y + 180)	M1	May be on diagram <i>PBC</i> (allow <i>B</i>)	
	180 - (360 - (y + 100 + 2y + 80)) or 180 - (360 - (3y + 180))	M1	PBX	
	Simplifies to $3y$ and states $x = 3y$	A1	Must have seen correct working for M1 M1	
	All reasons given	A1	Must have M1 M1 Angles at a point	
			and angles on a (straight) line (add up to 180)	
9			and alternate angles (are equal)	
9	Alternative method 8 (Produces <i>PB</i> to <i>Y</i>) <i>CBY</i> = 180 – <i>PBC</i> in terms of y			
	360 - (y + 100 + 2y + 80) or 360 - (3y + 180)	M1	May be on diagram <i>PBC</i> (allow <i>B</i>)	
	180 - (360 - (y + 100 + 2y + 80)) or 180 - (360 - (3y + 180))	M1	СВҮ	
	Simplifies to $3y$ and states $x = 3y$	A1	Must have seen correct working for M1 M1	
	All reasons given		Must have M1 M1	
			Angles at a point	
		A1	and angles on a (straight) line (add up to 180)	
			and corresponding angles (are equal)	

ADDITIONAL GUIDANCE FOR Q9 IS ON THE NEXT PAGE

Q	Answer	Mark	Comments		
	Addit	ional Guio	lance (Q9)		
	Recovery of brackets is not allowed as	it is a proc	f		
	Acceptable reasons must include the w	vord 'angle	s'		
	These reasons are not allowed:				
9	Alternating angles, alternative angles,	angles in a	circle, straight line,		
	at a point, round a point, parallel lines				
	Supplementary angles are not allowed unless accompanied by an acceptable reason eg Allied angles are supplementary is allowed				
	Other variations on these methods will be seen. Escalate if necessary.				
	Starting with $x = 3y$ or substituting values for x and y is zero unless M marks seen in working				

	(x-5)(x-2) or $(x-5)(x+3)or (5-x)(2-x)or (5-x)(-x-3)$	M1	oe factorisation	
	$\frac{x-2}{x+3}$ or $\frac{2-x}{-x-3}$	A1	oe numerator and denominat	or both linear
10(a)	Additional Guidance			
	Correct answer followed by incorrect further work			M1 A0
	$\frac{x-2}{x+3}$ or $\frac{2-x}{-x-3}$ from incorrect method			M0 A0
	Allow fraction with correct factorisations and common factors crossed out			M1 A1
	Allow $x - 2/x + 3$			M1 A1

Q	Answer	Mark	Comments	
10(b)	$w^{2}x^{3}y^{2}(w^{3}+x^{3}y)$	B2	B1 A correct partial factorisal least one variable fully factorisal eg1 $y^2(w^5x^3+w^2x^6y)$ eg2 $w^2x(w^3x^2y^2+x^5y^3)$ or a correct partial factorisate three variables as factors eg $wxy (w^4x^2y + wx^5y^2)$ or full common factor with o brackets correct $w^2x^3y^2(w^3 +)$ or $w^2x^3y^2($ Must be two terms in each brackets	tion with at sed tion with all ne term in $(x + x^3y)$
	Additional Guidance			
	Allow multiplication signs and 1s and u	innecessa	ry brackets for B2 and B1	
	Use of negative or fractional or zero powers is a maximum of B1			
	$w^2 x^3 y^2 (w^3 + x^3 y)$ followed by incorrect further work			B1
	Answer line incorrect, check working li	nes for po	ssible B1	

Q	Answer	Mark	Comments	
	1	1		
	$4x^2 \text{ or } 3px^2 \text{ or } 4 + 3p$	M1	May be seen in an expansion Allow unsimplified eg $3x \times px$	or a grid
	their $4(x^2)$ + their $3p(x^2) = -23(x^2)$		Correct or ft their expansion	
			ft is equating their terms in x^2	to $-23x^2$
		M1dep	Must be at least two terms with linear term in p	h at least one
11			Allow unsimplified eg $3x \times px + 4x^2 = -23x^2$	
	-9	A1		
	Additional Guidance			
	In this question, only consider terms in	x^2		
	If only one term in x^2 the maximum ma	ark is M1		
	4 + 3p = -23 followed by $7p = -23$			M1 M1 A0

	2 <i>n</i> + 5	B2	B1 2 <i>n</i> + <i>k k</i> ≠ 5	
	Additional Guidance			
12(-)	Allow any letter eg $2x + 5$			B2
12(a)	Allow $n = eg n = 2n + 5$ or $n = 2$	2x + 5		B2
	2 <i>n</i>			B1
	2n + 5 = 0 is B2 unless also seen with	answer o	f -2.5 which then scores B1	

Q	Answer	Mark	Comments	
	Alternative method 1			
	(3 <i>n</i> – 1) (×) their (2 <i>n</i> + 5)	M1	ft their (a) Brackets needed but may be recovered	
	$6n^2 + 15n - 2n - 5$	M1dep	4 terms with at least 3 correct Implied by $an^2 + 13n - 5$ ($a \neq 0$) or $6n^2 + 13n + b$ ($b \neq 0$) ft their two term linear expression in (a)	
	$6n^2 + 13n - 5$	A1ft	ft their two term linear expression in (a)	
	Alternative method 2			
	(Second differences =) 12 or $6n^2$ or $a = 6$	M1	Seen at least once and not contradicted	
12(b)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1dep	Subtracts $6n^2$ from the terms in sequence Z	
	$6n^2 + 13n - 5$	A1		
	Alternative method 3			
	Any two of a + b + c = 14 4a + 2b + c = 45 9a + 3b + c = 88 16a + 4b + c = 143	M1		
	3a + b = 45 - 14 and $5a + b = 88 - 45$	M1dep	oe Obtains two correct equations in same two variables from their equations	
	$6n^2 + 13n - 5$	A1		

Q	Answer	Mark	Comments		
	Alternative method 4				
	(Second differences =) 12 or $6n^2$ or $a = 6$	M1	Seen at least once and not co	ontradicted	
	3a + b = 45 - 14 and substitutes $a = 6$	M1dep	oe eg1 $5a + b = 88 - 45$ and substitutes $a = 6$ eg2 $7a + b = 143 - 88$ and substitutes $a = 6$	5	
	$6n^2 + 13n - 5$	A1			
	Alternative method 5				
	(Second differences =) 12	M1	Seen at least once and not co	ontradicted	
12(b)	$14 + (45 - 14)(n - 1) + 0.5 \times 12(n - 1)(n - 2)$	M1dep	Using $p + q(n - 1) + 0.5r(n - 1)$ p is 1st term q is 2nd term - 1st term r is second differences	l)(n –2)	
	$6n^2 + 13n - 5$	A1			
	Additional Guidance				
	Allow any letter or mixed letters eg 6	$6x^2 + 13x$	-5 or $6n^2 + 13x - 5$	M1 M1 A1	
	Allow $n = eg \ n = 6n^2 + 13x - 5$			M1 M1 A1	
	$6n^2 + 13n - 5 = 0$ is M1 M1 A1 unless also seen with solutions which then scores M1 M1 A0				

Q	Answer	Mark	Comments
	Alternative method 1		
	a-b-2=0 or $a + \frac{7}{2}b - \frac{49}{2} = 0$	M1	oe equation Allow an unsimplified equation eg $a + b \times (-1) - 2(-1)^2 = 0$ Missing brackets can be recovered
	a-b-2=0 and $a + \frac{7}{2}b - \frac{49}{2} = 0$	M1	oe two equations Allow unsimplified equations
13	$\frac{7}{2}a + a = 7 + \frac{49}{2}$ or $\frac{7}{2}b - b = \frac{49}{2} - 2$ and <i>a</i> - their <i>b</i> - 2 = 0	M1dep	oe dep on first M1 Correct method to form an equation in a or correct method to form an equation in b and substitutes to form an equation in a Their two equations must both contain a and b
	(0, 7)	A1	SC4 Answer (0, 7) from $(2x - 7)(1 + x)$ or $2x^2 + 2x - 7x - 7$ or $2x^2 - 5x - 7$

Q	Answer	Mark	Comments	
	Alternative method 2			
	(7-2x) or $(1+x)$		oe	
	or $(2x - 7)$ or $(-1 - x)$	M1	Brackets not needed	
	or $(x - 3.5)$ or $(3.5 - x)$			
	or $2x^2 + 2x - 7x - 7$ or $2x^2 - 5x - 7$			
	(7-2x)(1+x) or $(2x-7)(-1-x)$		oe eg $-(2x^2 - 5x - 7)$	
	or $7 + 7x - 2x - 2x^2$ or $7 + 5x - 2x^2$	M1	y = not needed	
			Expansion not needed	
	Substitutes $x = 0$ in their quadratic		dep on first M1	
13	or	M1dep	Expansion not needed for their quadratic	
	selects the constant term from their		but must be correct if attempted	
	quadratic			
	(0, 7)	A1	SC4 Answer (0, 7) from $(2x - 7)(1 + x)$	
		,	or $2x^2 + 2x - 7x - 7$ or $2x^2 - 5x - 7$	
	Alternative method 3			
	$b-2 \times 2x$ or $b-4x$	M1	Differentiates correctly	
	<i>b</i> – 2 × 2 × 1.25 = 0			
	or $b - 4 \times 1.25 = 0$ or $b = 5$	M1		
	$a + \text{their } b \times (-1) - 2 \times (-1)^2 = 0$		ое	
	or		dep on first M1	
	<i>a</i> + their <i>b</i> × $(\frac{7}{2}) - 2 \times (\frac{7}{2})^2 = 0$	M1dep	Must have substituted a value into $b - 4x$ and equated to 0	
			Missing brackets can be recovered	
	(0, 7)		SC4 Answer (0, 7) from $(2x - 7)(1 + x)$	
		A1	or $2x^2 + 2x - 7x - 7$ or $2x^2 - 5x - 7$	

Q	Answer	Mark	Comments

	Alternative method 4				
13	$-2\{(x-\frac{b}{4})^2\}$	M1	oe completed square		
	$\frac{b}{4}$ = 1.25 or <i>b</i> = 5	M1			
	<i>a</i> + their <i>b</i> × (-1) - 2 × (-1) ² = 0 or <i>a</i> + their <i>b</i> × $(\frac{7}{2}) - 2 \times (\frac{7}{2})^2 = 0$	M1dep	oe dep on first M1 Must have equated $\frac{b}{4}$ to a va Missing brackets can be recov	lue vered	
	(0, 7)	A1	SC4 Answer (0, 7) from $(2x - or 2x^2 + 2x - 7x - 7 or 2x^2 - $	(-7)(1 + x) (-5x - 7)	
	Additional Guidance				
	Answer (7, 0)			A0	
	Answer only (0, 7)			M3 A1	
	Alt 1 3rd M1 Follow correct method rules as in Q4 Alt 1 2nd M1				
	rks				
	eg (Alt 2) $2x^2 - 3x + 7$ (no method se	en) Ansv	ver (0, 7)	Zero	

Q	Answer	Mark	Comments		
	Alternative method 1				
	180 ÷ (7 + 5) or 15	M1	oe		
	(w =) 7 × their 15 or 105 or (y =) 5 × their 15 or 75	M1dep	oe May be seen on diagram M2 105 : 75		
	$\frac{180 - \text{their } w}{2} \text{or } \frac{\text{their } y}{2}$	M1dep	oe dep on M1 M1		
	37.5	A1	oe SC2 52.5		
14	Alternative method 2				
14	w + y = 180 and $5w = 7yor w + \frac{5}{7}w = 180 or y + \frac{7}{5}y = 180$	M1	oe		
	$(w =) \frac{180 \times 7}{12}$ or 105 or $(y =) \frac{180 \times 5}{12}$ or 75	M1dep	oe May be seen on diagram M2 105 : 75		
	$\frac{180 - \text{their } w}{2} \text{or } \frac{\text{their } y}{2}$	M1dep	oe dep on M1 M1		
	37.5	A1	oe SC2 52.5		

Q	Answer	Mark	Comments		
	Alternative method 3				
	$\frac{w}{180 - w} = \frac{7}{5}$ or $\frac{y}{180 - y} = \frac{5}{7}$	M1	oe		
	$(w =) \frac{180 \times 7}{12}$ or 105 or $(y =) \frac{180 \times 5}{12}$ or 75	M1dep	oe May be seen on diagram M2 105 : 75		
	$\frac{180 - \text{their } w}{2} \text{or} \frac{\text{their } y}{2}$	M1dep	oe dep on M1 M1		
	37.5	A1	oe SC2 52.5		
14	Alternative method 4				
	$y = 2x$ and $w = \frac{7}{5} \times 2x$	M1	ое		
	$2x + \frac{7}{5} \times 2x = 180$ or $4.8x = 180$	M1dep	oe		
	180 ÷ their 4.8	M1dep	oe dep on M1 M1		
	37.5	A1	oe SC2 52.5		
	Ad	ditional G	Buidance		
	75 : 105 implies M1 M0 M0 unless reco	overed (av	vard SC2 if answer 52.5)		

Q	Answer	Mark	Comments	
		I		
15(a)	$\sqrt{x} = \frac{5}{2}$ or $\sqrt{x} = 2.5$ or $\sqrt{x} = \frac{1}{0.4}$ or $\frac{4}{25}x = 1$ or $4x = 25$	M1	oe Must have $\sqrt{x} =$ or have e with no errors	liminated $$
	$\frac{25}{4}$ or 6.25	A1	ое	
	Additional Guidance			
	$2\sqrt{x} = 5$ (no further correct work)			MO
	Allow unprocessed values for M1 eg $\frac{4}{25}x = 1^2$ or $\left(\frac{2}{5}\right)^2 x = 1$			M1
	\sqrt{x} may be seen as $x^{\frac{1}{2}}$ or $x^{0.5}$			

	$x^{2}(x-5) (= 0)$ or $x^{2}(5-x) (= 0)$ or $(x =) 0$ or $(x =) 5$	M1	oe factorisation eg1 $(x^2 - 0)(x - 5)$ eg2 $x (x^2 - 5x)$		
	0 and 5 with no other solutions	A1			
15(b)	Additional Guidance				
	For A1, the word 'and' is not needed If their answer has both 0 and 5 with no other solutions award M1 A1			M1 A1	
	0. 5. –5			M1 A0	
	Either or both solutions seen embedded			M1 A0	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$yx = 8(w - x)$ or $y = \frac{8w - 8x}{x}$	M1		
	yx = 8w - 8x	M1dep	oe eg $yx - 8w + 8x = 0$ Implies M1 M1	
	yx + 8x = 8w or $x(y + 8) = 8wor \frac{8w}{y + 8}$	M1dep	oe dep on M1 M1 Implies M1 M1 M1	
	$x = \frac{8w}{y+8}$		oe eg $\frac{-8w}{-y-8}$	
		A1	Must have x =	
			SC2 $x = \frac{8w}{y+1}$ SC1 $\frac{8w}{y+1}$	
16	Alternative method 2			
	$y = \frac{8w}{x} - 8$ or $y = \frac{8w}{x} - \frac{8x}{x}$	M1		
	$y + 8 = \frac{8w}{x}$	M1dep	$oe eg y + 8 - \frac{8w}{x} = 0$	
			Implies M1 M1	
	yx + 8x = 8w or $x(y + 8) = 8w$		ое	
	or $\frac{1}{y+8} = \frac{x}{8w}$ or $\frac{8w}{y+8}$	M1dep	dep on M1 M1 Implies M1 M1 M1	
	$x = \frac{8w}{y+8}$		oe eg $\frac{-8w}{-y-8}$	
		A1	Must have x =	
			SC2 $x = \frac{8w}{y+1}$ SC1 $\frac{8w}{y+1}$	

Q	Answer	Mark	Comments	
	Alternative method 3			
	yx = 8(w - x)	M1		
16	$\frac{yx}{8} = w - x$	M1dep	oe eg $\frac{yx}{8} - w + x = 0$ Implies M1 M1	
	$\frac{yx}{8} + x = w \text{or} x(\frac{y}{8} + 1) = w$ or $\frac{w}{\frac{y}{8} + 1}$	M1dep	oe dep on M1 M1 Implies M1 M1 M1	
	$x = \frac{w}{\frac{y}{8} + 1}$	A1	oe eg $x = \frac{-w}{-\frac{y}{8}-1}$ Must have $x =$ SC2 $x = \frac{8w}{y+1}$ SC1 $\frac{8}{y-1}$	₩' + 1
	Additional Guidance			
	$x = \frac{8w}{y+8}$ in working with $\frac{8w}{y+8}$ on answer line			M3 A1
	$x = \frac{8w}{y+1}$ in working with $\frac{8w}{y+1}$ on answer line			SC2
	3rd M1 is for collecting terms in x (or x in numerator in Alt 2)			
	Allow multiplications signs and 1s thro	ughout		
	Correct answer followed by incorrect further work			M3 A0

Q	Answer	Mark	Comments	
17	$\pi x^2 y$	M1	ое	
	$\frac{1}{2} \times \frac{4}{3} \pi (6y)^3$ or $\frac{2}{3} \pi (6y)^3$ or $144 \pi y^3$	M1	oe Only allow missing brackets if recovered in subsequent working M2 $\frac{2}{3}(6y)^3 = x^2y$ oe equation eg $\frac{x^2}{y^2} = 144$ M2 $\sqrt{144}$	
	12 or $\frac{12}{1}$	A1	SC2 $\sqrt{288}$ or $12\sqrt{2}$ or 16.9	7
	Additional Guidance			
	12 and –12 or –12			A0
	Allow multiplication signs in M marks			
	Answer only of 12			M2 A1
	Answers only of 12 and –12			M2 A0
	Answer only of –12			M0 A0

18(a) <i>y</i> > 45° B1	
--------------------------------	--

Q	Answer	Mark	Comments	
	$(p+1)^2 + (p-1)^2$	M1	oe May be within a square ro	ot
	$p^{2} + p + p + 1 + p^{2} - p - p + 1$ or $p^{2} + 1 + p^{2} + 1$	M1	oe May be within a square ro Implies M1 M1	pot
	$2p^2 + 2$ or $2(p^2 + 1)$	A1	May be within a square root Must be simplified May be implied by final mark	
	$\frac{p+1}{\sqrt{2p^2+2}}$	A1	Allow $a = b = 1$ $c = d = 2$ SC2 $\frac{p+1}{\sqrt{(p+1)^2 + (p-1)^2}}$	
18(b)	Additional Guidance			
	$\frac{p+1}{\sqrt{2p^2+2}}$ and further incorrect work			M2 A1 A0
	Allow 1 <i>p</i> for <i>p</i>			
	Use of $\frac{\sin y}{\cos y} = \frac{p+1}{p-1}$ can be marked by the scheme			
	eg $(p-1)^2 \sin^2 y = (p+1)^2 \cos^2 y$			
	$(p-1)^2 \sin^2 y = (p+1)^2 (1-\sin^2 y)^2$	y)		
	$((p - 1)^{-} + (p + 1)^{-}) \sin^{-} y = (p + 1)^{-}$ (M1 A1 A1 may subsequently be gained) ⁻ First ed)	M1 gained here	

Q	Answer	Mark	Comments
19	Continuous curve with point of inflection, labelled <i>P</i> or (1, 2), in first quadrant and minimum point, labelled <i>Q</i> or (<i>a</i> , <i>b</i>), in fourth quadrant, with <i>x</i> -coordinate of $Q > x$ -coordinate of <i>P</i> eg	B3	For B3, allow the labelling of one coordinate as sufficient for each point B2 As B3 but not sufficiently labelled B1 Curve with point of inflection, labelled P or (1, 2), in first quadrant or curve with minimum point, labelled Q or (a, b) , in fourth quadrant For B1, allow labelling using one coordinate as sufficient SC2 As B3 but <i>x</i> -coordinate of Q < <i>x</i> -coordinate of P eg

ADDITIONAL GUIDANCE FOR Q19 IS ON THE NEXT PAGE

Q Answer Mark Comments	Q	Answer	Mark	Comments
------------------------	---	--------	------	----------

	Additional Guidance (Q19)				
19	For B3, curve does not have to cross the x -axis after Q and does not have to cross the y -axis before P				
	For a stationary point, curve must not stop at the point				
	At <i>P</i> , the curve must change from concave upward to concave downward for B3 or B2 or vice-versa for B1 or SC2				
	Note that other non-stationary points of inflection may also be seen (up to B3 possible)				
	Curve may have horizontal asymptotes as $x \rightarrow \pm \infty$ (up to B3 possible)				
	Mark intention for stationary points, positioning of labels and smoothness of curve				
	More than 1 stationary point of inflection and/or more than 1 minimum point and/or maximum point(s) can score a maximum of B1				
	Labelling using a coordinate or coordinates may be seen by labelling on an axis or on axes (axes may also show other numbers)				

nts	Comments	Mark	Answer	Q
		L		
	Allow $(-a - 6 \ 2a + 8)$	M1	$\begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} a \\ 2 \end{pmatrix} \text{ or } \begin{pmatrix} -a-6 \\ 2a+8 \end{pmatrix}$	
t <i>a</i> = –3)	oe linear equation(s) (not $a = -3$) Implies M1 M1		-a - 6 = a or $2a + 8 = 2$	
)	oe equations (not $a = -3$)	A1	-a - 6 = a and $2a + 8 = 2$	
linear equations olution and No	ft M1 M1 A0 Must show that their two line do not have a common solut		Shows both equations have a common solution ($a = -3$) and Yes	
$\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and Yes	SC4 $\begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$	A1ft		
$\begin{pmatrix} -3\\2 \end{pmatrix}$	SC3 $\begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$			
Additional Guidance				
	$\binom{a}{2}\binom{-1 & -3}{2 & 4}$ is first M0 unless recovered			20
	In matrices, allow missing brackets or inclusion of 'fraction' lines			
	Only one equation can score a maximum of M1 M1 A0 A0			
Zero	a = -3 with no correct working			
M1 M0	$\begin{pmatrix} -a-6 \end{pmatrix} = \begin{pmatrix} a \end{pmatrix}$ with no further valid work			
A0 A0	$\left(2a+8\right)^{-}\left(2\right)^{-}$ with no further valid work			
	The final A mark may be seen in various ways			
	ch time and Yes and Yes)	<i>a</i> = –3 ead to 2 <i>a</i> = –6	eg1 Solves both equations obtaining (or shows that both equations simplify	
	eg2 Solves one equation obtaining $a = -3$ and shows by substitution that $a = -3$ satisfies the other equation and Yes			
	eg3 Adds the two equations to obtain a correct statement and Yes -2a - 6 = 0 $2a + 8 = 2$ $2 = 2$			
	Suidance of 'fraction' lines M1 A0 A0 ch time and Yes and Yes) shows by substitution that statement and Yes	ered inclusion of um of M1 I ork a = -3 ead to $2a = -6$ = -3 and s a and Yes a correct s	Ac $\begin{pmatrix} a \\ 2 \end{pmatrix} \begin{pmatrix} -1 & -3 \\ 2 & 4 \end{pmatrix} \text{ is first M0 unless recov}$ In matrices, allow missing brackets or Only one equation can score a maxim a = -3 with no correct working $\begin{pmatrix} -a - 6 \\ 2a + 8 \end{pmatrix} = \begin{pmatrix} a \\ 2 \end{pmatrix}$ with no further valid w The final A mark may be seen in vario eg1 Solves both equations obtaining (or shows that both equations simplify eg2 Solves one equation obtaining $a = -3$ satisfies the other equation eg3 Adds the two equations to obtain -2a - 6 = 0 2a + 8 = 2 2 = 2	20

Q	Answer	Mark	Comments	
	r			
	3(x-1) or $3x-3or 2(x-2) or 2x-4$	M1		
21	3x - 3 and $2x - 4$ or $5x - 7$	M1	Implies M1 M1	
	$5(x-1)(x-2)$ or $5(x^2-2x-x+2)$ or $5x^2-15x+10$ or $(x-1)(x-2)$ expanded and multiplied by 5	M1	oe Allow one error in four term ex $5(x-1)(x-2)$ Implied by $5(x^2 - 3x + k)$ or 50	xpansion of $(ax^2 - 3x + 2)$
	$5x^2 - 20x + 17 (= 0)$	M1dep	dep on 3rd M1 oe 3-term quadratic equation eg $5x^2 - 20x = -17$ Correctly collects terms in the	ir expansion
	$\frac{-20 \pm \sqrt{(-20)^2 - 4 \times 5 \times 17}}{2 \times 5}$ or $\frac{10 \pm \sqrt{15}}{5}$ or $(x-2)^2 - 4 = -\frac{17}{5}$ or $5[(x-2)^2 - 4] = -17$	M1	oe Correct use of quadratic formula for their 3-term quadratic eg $(-20)^2$ can be 20^2 or correct factorisation of their 3-term quadratic or attempt to complete the square for their 3-term quadratic Must be correct up to form $(x-a)^2 + b = c$ or $k[(x-d)^2 + e] = f$	
	1.23 and 2.77	A1	Must be 3 significant figures	
	Additional Guidance			
	For A1, the word 'and' is not needed eg 1.23, 2.77 (with method seen)			M5 A1
	Brackets may be recovered throughout			
	5th M1 may be implied by solutions of	their quad	ratic equation seen	
	M0 M0 M0 M0 M1 A0 is possible if the	y have a 3	B-term quadratic equation	
	Answers only			Zero

Q	Answer	Mark	Comments				
	Alternative method 1 Thangles (IVIB and					
	$17^{2} - (16 \div 2)^{2}$ or 225 or $17^{2} = VM^{2} + (16 \div 2)^{2}$	M1	oe				
	$(VM =)\sqrt{17^2 - (16 \div 2)^2}$ or $\sqrt{225}$ or 15	M1	Implies M1 M1 May be seen on diagram				
22	$\cos x = \frac{22 \div 2}{\text{their 15}}$ or $\sin x = \frac{\sqrt{15^2 - (22 \div 2)^2}}{\text{their 15}}$ or $\tan x = \frac{\sqrt{15^2 - (22 \div 2)^2}}{22 \div 2}$	M1dep	x is required angle dep on M1 M1 oe eg correct method using cosine rule or sine rule simplified to $\cos x = \text{ or } \sin x =$ or $90 - \sin^{-1} \frac{22 \div 2}{\text{their } 15}$				
	42.8	A1	Allow 43 with correct working SC2 Answer 36.8 or 36.9				

Q	Answer	Mark	Comments
	Alternative method 2 Triangles E	BXM and N	/XB and VXM (<i>M</i> is the midpoint of <i>BC</i>)
	$BX^{2} = (16 \div 2)^{2} + (22 \div 2)^{2}$ or 185 and $17^{2} - \text{their } BX^{2}$ or $17^{2} = VX^{2} + \text{their } BX^{2}$	M1	oe eg for BX^2 $BX^2 = (\frac{1}{2}BD)^2 = \frac{1}{4}(16^2 + 22^2)$
22	$(VX =) \sqrt{17^2 - (\text{their } BX)^2}$ or $\sqrt{104}$ or $2\sqrt{26}$ or [10.19, 10.2]	M1	Implies M1 M1 May be seen on diagram
	$\tan x = \frac{\text{their} [10.19, 10.2]}{22 \div 2}$ or $\sin x = \frac{\text{their} [10.19, 10.2]}{\text{their } VM}$ or $\cos x = \frac{22 \div 2}{\text{their } VM}$	M1dep	<i>x</i> is required angle dep on M1 M1 oe eg correct method using cosine rule or sine rule simplified to $\cos x = \text{ or } \sin x =$ or $90 - \tan^{-1} \frac{22 \div 2}{\text{their } [10.19, 10.2]}$
	42.8	A1	Allow 43 with correct working SC2 Answer 36.8 or 36.9

Q	Answer	Mark	Comments		
	Alternative method 3 Triangles VMB and VMN				
	$17^{2} - (16 \div 2)^{2}$ or 225 or $17^{2} = VM^{2} + (16 \div 2)^{2}$	M1	oe		
	$(VM =) \sqrt{17^2 - (16 \div 2)^2} \text{ or } \sqrt{225} \text{ or } 15$	M1	Implies M1 M1 May be seen on diagram		
22	$\frac{\frac{1}{2} \times (180 - \cos^{-1})}{\frac{\text{their } 15^2 + \text{their } 15^2 - 22^2}{2 \times \text{their } 15 \times \text{their } 15}})$	M1dep	dep on M1 M1		
	42.8	A1	Allow 43 with correct working SC2 Answer 36.8 or 36.9		
	Ad	Additional Guidance			
	Alt 2 3rd M1 their VM must be from co	hod			

Q	Answer	Mark	Comments
	Alternative method 1		
	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \text{ or } 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	B1	
	their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (×) their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	M1	Either order This mark cannot be implied Must have scored B1 or B2
23	$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \text{ or } -3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $3 \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	M1dep	Correctly multiplies their pair of 2 by 2 matrices
	$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \text{ or } -3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $3 \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and scale factor -3	A1	Must gain B1 B1 M1 M1

Q Answer	Mark	Comments
----------	------	----------

	Alternative metho	od 2 Algebraic n	nethod	
	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \text{ or } 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		B1	
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$		B1	
23	their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ = $\begin{pmatrix} 3x \\ 3y \end{pmatrix}$	their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (×) $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out
23	their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (*) their $\begin{pmatrix} 3x \\ 3y \end{pmatrix}$ = $\begin{pmatrix} -3x \\ -3y \end{pmatrix}$	their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ (*) their $\begin{pmatrix} -x \\ -y \end{pmatrix} = \begin{pmatrix} -3x \\ -3y \end{pmatrix}$	M1dep	Multiplications must be correctly worked out
	$\begin{pmatrix} -3x \\ -3y \end{pmatrix}$ and scale factor –3		A1	Must gain B1 B1 M1 M1

Q Answer Mark Comments	
------------------------	--

	Alternative metho	d 3 Unit square	method	
	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \text{ or } 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		B1	
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$		B1	
23	their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ (×) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ = $\begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 3 \end{pmatrix}$	their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (×) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ = $\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}$	M1	This mark cannot be implied Must have scored B1 or B2 Multiplications must be correctly worked out May be seen as three products
	their $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (×) their $\begin{pmatrix} 3 & 0 & 3 \\ 0 & 3 & 3 \end{pmatrix}$ = $\begin{pmatrix} -3 & 0 & -3 \\ 0 & -3 & -3 \end{pmatrix}$	their $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ (×) their $\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & -3 \\ 0 & -3 & -3 \end{pmatrix}$	M1dep	Multiplications must be correctly worked out May be seen as three products
	$\begin{pmatrix} -3 & 0 & -3 \\ 0 & -3 & -3 \end{pmatrix}$ and scale factor -3		A1	Must gain B1 B1 M1 M1 May be seen as three 2 by 1 matrices

ADDITIONAL GUIDANCE FOR Q23 IS ON THE NEXT PAGE

Q	Answer	Mark	Comments	
	Additi	ional Guid	ance (Q23)	
	If both matrices are incorrect			Zero
	Matrices must be used - ignore diagram	ns		
	In matrices, allow missing brackets or i	inclusion of	fraction' lines	
	Alt 1 B2 gained then $\begin{pmatrix} -3 & 0 \\ 0 \end{pmatrix}$ state	ed		B2 M0
	$\left(\begin{array}{c} 0 \\ -3 \end{array}\right)$			M0 A0
23	Allow 'enlargement –3' for 'scale factor –3'			
	Do not allow '-3' for 'scale factor	⁻ −3'		
	Scale factor –3 with no valid working			Zero
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ scores B1 but multiplication of two matrices with B1 s	t does not	score M1 M1 for the	
	Alt 3 May also see working for $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$			

Q	Answer	Mark	Comments	
	$\frac{x+1}{2(x+1)+1}$ or $\frac{x+1}{2x+3}$	M1	ое	
	(2x + 1)(2x + 3)	M1	oe Correct common denominator for their tw fractions Their two fractions must have different algebraic denominators	
	(2x + 1)(x + 1) and $x(2x + 3)$	M1dep	oe Correct expressions for their i dep on 2nd M1	numerators
24	$2x^2 + 2x + x + 1 - 2x^2 - 3x$	M1dep	Subtracts their numerators Must expand all brackets Allow one sign error dep on 2nd M1	
	$\frac{1}{(2x+3)(2x+1)} \text{or} \frac{1}{4x^2+8x+3} \qquad A1 \qquad \text{oe fraction in its simplest form}$		1	
	Ad	Additional Guidance		
	Correct answer followed by incorrect fu	urther work	(M4 A0
	However, $\frac{1}{(2x+3)(2x+1)}$ with an attempt to expand the denominator should not be penalised even if their expansion is not correct			
	2nd and 3rd M1 $(2x + 1)$ must be use	2nd and 3rd M1 ($2x + 1$) must be used		
	$\frac{2x^2 + 3x + 1}{(2x+3)(2x+1)} - \frac{2x^2 + 3x}{(2x+3)(2x+1)} $ (ne	o further c	orrect work)	M1 M1 M1 M0 A0
	Allow = 0 throughout, including in the a	answer		

Q	Answer	Mark	Comments	
		1		
	<i>y</i> -coordinate of <i>C</i> is -5 or (0, -5)	B1	May be on diagram or implied answer	by final
	$3 \times 2x^2$ or $6x^2$	M1	Differentiates correctly	
	6 × 2 × 2 or 24		Substitutes $x = 2$ in their $\frac{dy}{dx}$	
		M1	their $\frac{dy}{dx}$ must be a function of	f x but
			cannot be $2x^{\circ} - 5$	
	y - 11 = their 24 ($x - 2$)		dep on 2nd M1	
	or y = their 24 x + c and substitutes (2, 11)	M1dep		
	or $y = 24x - 37$			
	y - 11 = their 24 (0 – 2)		Substitutes $x = 0$ into their line	ear equation
25	or $y = 0 - 37$ or $y = -37$	M1dep	dep on 3rd M1	
	or (y-coordinate of $D =$) –37		May be seen on diagram	
			11 – 2 × their 24 scores 3rd N	11 and 4th M1
	32A1ftft B0 M4 with a positive length from their y-coordinate of $C37$			n from
	Additional Guidance			
	-32			A0
	(–5, 0) is B0 unless recovered			
	1st M1 Allow $6x^2 + c$ (<i>c</i> an unknown constant) if <i>c</i> subsequently rejected			
	Differentiates to $6x^2 - 5$ 1st M0			
	gradient = $6 \times 2^2 - 5 = 19$ 2nd M1			
	Could continue and gain 3rd M1 and 4	th M1		
	3rd M1 Cannot be the equation of the	normal at	(2, 11)	

Q	Answer	Mark	Comments		
	Alternative method 1 (LHS \rightarrow RHS)				
	$\sin^2 x - 3(1 - \sin^2 x)$	M1	Must see $(1 - \sin^2 x)$		
	$\sin^2 x - 3 + 3\sin^2 x = 4\sin^2 x - 3$	A1	Must see correct expansion SC1 Correct rearrangement of given identity to $3 \sin^2 x + 3 \cos^2 x = 3$ and $3 (\sin^2 x + \cos^2 x) = 3$ and $\sin^2 x + \cos^2 x = 1$		
	Alternative method 2 (LHS \rightarrow RHS)				
	$1 - \cos^{2} x - 3 \cos^{2} x = 1 - 4 \cos^{2} x$ $= 1 - 4(1 - \sin^{2} x)$	M1	Must see $(1 - \cos^2 x)$ and $(1 - \sin^2 x)$		
26(a)	$1 - 4 + 4\sin^2 x = 4\sin^2 x - 3$	A1	Must see correct expansion SC1 Correct rearrangement of given identity to $3 \sin^2 x + 3 \cos^2 x = 3$ and $3 (\sin^2 x + \cos^2 x) = 3$ and $\sin^2 x + \cos^2 x = 1$		
	Alternative method 3 (RHS \rightarrow LHS)	L			
	$4\sin^2 x - 3(\sin^2 x + \cos^2 x)$	M1	Must see $(\sin^2 x + \cos^2 x)$		
	$4 \sin^{2} x - 3 \sin^{2} x - 3 \cos^{2} x$ $= \sin^{2} x - 3 \cos^{2} x$	A1	Must see correct expansion SC1 Correct rearrangement of given identity to $3 \sin^2 x + 3 \cos^2 x = 3$ and $3 (\sin^2 x + \cos^2 x) = 3$ and $\sin^2 x + \cos^2 x = 1$		

Q	Answer	Mark	Comments	
	Alternative method 4 (RHS \rightarrow LHS)			
26(a)	$4 (1 - \cos^{2} x) - 3 = 4 - 4 \cos^{2} x - 3$ $= 1 - 4 \cos^{2} x$ $= \sin^{2} x + \cos^{2} x - 4 \cos^{2} x$	M1	Must see $(1 - \cos^2 x)$ and $\sin^2 x + \cos^2 x$ and correct expansion	
	$=\sin^2 x - 3\cos^2 x$	A1	SC1 Correct rearrangement of given identity to $3 \sin^2 x + 3 \cos^2 x = 3$ and $3 (\sin^2 x + \cos^2 x) = 3$ and $\sin^2 x + \cos^2 x = 1$	
	Alternative method 5 (LHS and RHS \rightarrow common expression)			
	$1 - \cos^{2} x - 3 \cos^{2} x = 1 - 4 \cos^{2} x$ and $4(1 - \cos^{2} x) - 3 = 4 - 4 \cos^{2} x - 3$ $= 1 - 4 \cos^{2} x$	B2	Must see $(1 - \cos^2 x)$ and correct expansion SC1 Correct rearrangement of given identity to $3 \sin^2 x + 3 \cos^2 x = 3$ and $3 (\sin^2 x + \cos^2 x) = 3$ and $\sin^2 x + \cos^2 x = 1$	

ADDITIONAL GUIDANCE FOR Q26(a) IS ON THE NEXT PAGE

Q	Answer	Mark	Comments	
	Additional Guidance (Q26(a))			
	As shown in the mark scheme, allow = signs but they may be seen (correctly) as the identity symbol			
	= signs may be implied (eg working down the page, line by line)			
	To give M1 the working must not need any further identities applying			
	The other side of the identity may be seen throughout working in Alts 1 to 4 However, full working on one side of the identity is needed for M1 A1 eg (Alt 2) $1 - \cos^2 x - 3 \cos^2 x = 4 \sin^2 x - 3$ $1 - 4 \cos^2 x = 4 \sin^2 x - 3$ $1 - 4(1 - \sin^2 x) = 4 \sin^2 x - 3$			M1
	$1 - 4 + 4 \sin^2 x = 4 \sin^2 x$	$n^{2}x - 3$		A0
	(with $4 \sin^2 x - 3 = 4 \sin^2 x - 3$ it would be M1 A1)			
26(a)	Other examples may be seen, escalate if necessary			
	Allow any variable or mixed variables or no variables			
	Allow $(\sin x)^2$ for $\sin^2 x$ and $(\cos x)^2$ for Allow s ² for $\sin^2 x$ and c ² for $\cos^2 x$	$\cos^2 x$		
	Do not allow sin x^2 for sin ² x (but could	d still gain l	M1)	
	eg1 Alt 1 $\sin^2 x - 3(1 - \sin^2 x)$			M1
	$=\sin^2 x - 3 + 3 \sin x^2 = 4 \sin x^2 - 3$			
	eg1 Alt 1 $\sin x^2 - 3(1 - \sin^2 x)$			
	$= \sin^2 x - 3 + 3 \sin x^2 = 4 \sin x^2 - 3$			
	Do not allow recovery of missing brackets as this is a proof			
	SC1 Instead of factorisation, they can divide by 3			
	Other examples of SC1 may be seen where the identity is assumed to be correct and correct working with use of $\sin^2 x + \cos^2 x = 1$ is seen			

Q	Answer	Mark	Comments	
	Alternative method 1			
	$\sin^2 x = \frac{3}{4}$ or $\sin x = \frac{\sqrt{3}}{2}$		oe eg $(\sin x)^2 = \frac{3}{4}$	
	or $\sin x = \sqrt{\frac{3}{4}}$ or 60 or 120	M1	2	
			Must have $\sin^2 x = \text{ or } \sin x = \text{ or } \sin^{-1}$	
			Allow s for sin x	
			Do not allow sin x^2 for sin ² x but may be recovered	
	$\sqrt{3}$ or $\sin x = \sqrt{3}$		oe	
	$\sin x = -\frac{1}{2} \text{or } \sin x = -\sqrt{4}$	M1	Allow –0.86 or –0.87 for $-\frac{\sqrt{3}}{2}$	
	or 240 or 300 or -60		2	
	60 and 120 and 240 and 300	A 2	A1 60 and 120	
26(b)	with no other angles in range	72	or 240 and 300	
	Alternative method 2			
	$\tan^2 x = 3$ or $\tan x = \sqrt{3}$		oe eg $(\tan x)^2 = 3$	
	or 60 or 240		Allow 1.73 for $\sqrt{3}$	
	M1	M1	Must have $\tan^2 x = \text{ or } \tan x = \text{ or } \tan^{-1}$	
			Allow t for tan x	
			Do not allow $\tan x^2$ for $\tan^2 x$ but may be recovered	
	$\tan x = -\sqrt{3}$	N/1	Allow -1.73 for $-\sqrt{3}$	
	or 120 or 300 or –60			
	60 and 120 and 240 and 300	4.2	A1 60 and 240	
	with no other angles in range	~~	or 120 and 300	

Q	Answer	Mark	Comments	
	Alternative method 3			
26(b)	$\cos^{2} x = \frac{1}{4}$ or $\cos x = \frac{1}{2}$ or $\cos x = \sqrt{\frac{1}{4}}$ or 60 or 300	M1	oe eg $(\cos x)^2 = \frac{1}{4}$ Must have $\cos^2 x = \text{ or } \cos x = \text{ or } \cos^{-1}$ Allow c for $\cos x$ Do not allow $\cos x^2$ for $\cos^2 x$ but may be recovered	
	$\cos x = -\frac{1}{2}$ or $\cos x = -\sqrt{\frac{1}{4}}$ or 120 or 240	M1	oe	
	60 and 120 and 240 and 300 with no other angles in range	A2	A1 60 and 300 or 120 and 240	

ADDITIONAL GUIDANCE FOR Q26b IS ON THE NEXT PAGE

Q	Answer	Mark	Comments		
	Additional Guidance (Q26(b))				
	Ignore any solutions outside of $0 < x < 360$				
	All four solutions with extra solutions in rar accuracy mark	M1 M1 A1			
	eg 60 90 120 150 240 300 Only penalise extra solutions in range when all four correct solutions are given				
	Answer line blank, award any marks gaine	ed from	working lines		
	If angles are found in working lines but only some are listed on answer line award any method marks gained from the working lines				
	award any accuracy marks gained from eg1 Working lines $\sin x = \pm \frac{\sqrt{3}}{2}$ 60	n the ar and 12	nswer line 0 and 240 and 300		
26(b)	Answer line 60 and 120 and 240 eg2 Working lines $\tan x = \sqrt{3}$ 60 24	0		M1 M1 A1	
20(0)	Answer line 60 ea3 Working lines sin $x = \frac{\sqrt{3}}{60}$ 60 120	0 sin.	$x = -\frac{\sqrt{3}}{300}$	M1 M0 A0	
	Answer line 300		M1 M1 A0		
	Answers only can score up to 4 marks				
	All 4 correct \rightarrow 4 marks3 correct \rightarrow 3 marks2 correct \rightarrow 2 marks1 correct \rightarrow 1 mark				
	M1 M0 A1 or M0 M1 A1 are possible				
	eg1 sin x = $\frac{\sqrt{3}}{2}$ 60 120				
	eg2 $\sin x = -\frac{\sqrt{3}}{2}$ 240 300				
	Embedded answers can score up to M1 M1 A0				
	Working in rads or grads can score M marks if method seen				