AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

Level 2 Certificate FURTHER MATHEMATICS

Paper 2 Calculator

Monday 17 June 2019

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.

Afternoon
Time allowed: 2 hours

For Examiner's Use	
Pages	Mark
3	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
$24-25$	
$26-27$	
$28-29$	
30	
TOTAL	

Formulae Sheet

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Area of triangle $=\frac{1}{2} a b \sin C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Trigonometric Identities
$\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \quad \sin ^{2} \theta+\cos ^{2} \theta \equiv 1$
\qquad
$a=$ $b=$ \qquad

1 (b) $\quad\left(\begin{array}{cc}m & -1 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}2 & 2 \\ -2 & -1\end{array}\right)=\mathbf{I} \quad$ where I is the identity matrix.
Work out the value of m.

2 Here is a sketch of quadrilateral $P Q R S$.
M is the midpoint of $P S$.

Use gradients to show that $M R$ is parallel to $P Q$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$3-2<a<0$ and $-1<b<1$

Tick the correct box for each statement.

	Always true	Sometimes true	Never true
$a^{2}<0$	\square	\square	\square
$-1<b^{3}<1$	\square	\square	
$\frac{b}{a}<0$	\square	\square	\square
$a-b>0$	\square	\square	

Turn over for the next question

$4 \quad P$ is a point on a curve.
The curve has gradient function $\frac{x^{5}-17}{10}$
The tangent to the curve at P is parallel to the line $\quad 3 x-2 y=9$
Work out the x-coordinate of P.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

5 (a) Write $\sqrt[4]{a \times a^{-9}}$ as an integer power of a.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

5 (b) Simplify fully $\frac{\left(4 c d^{2}\right)^{3}}{2 c d^{4}}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

$6 \quad$ Here is a sketch of the curve $y=(2 x+3)(x-2)$
The curve intersects the x-axis at A and B.

6 (a) Complete the coordinates of A and B.
A (\qquad , 0)
B(\qquad , 0)

6 (b) Write down the range of values for x for which $\quad(2 x+3)(x-2)<0$
\qquad
\qquad
\qquad

Answer \qquad

7 (a) On the grid, sketch a graph for which the rate of change of y with respect to x is always zero.

7 (b) On the grid, sketch a graph for which
the rate of change of y with respect to x is always a positive constant.

8 (a) A linear sequence has first term $7+12 \sqrt{5}$
The term-to-term rule is

$$
\text { add } 9-2 \sqrt{5}
$$

One term of the sequence is an integer.
Work out the value of this integer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

8 (b) The nth term of a different sequence is $\frac{3 n^{2}-1}{n^{2}+1}$
Work out the sum of the first three terms.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

$9 \quad$ Factorise fully $\quad(p+6)^{11}-(p+6)^{10}$

Answer

\qquad
\qquad
\qquad

10 (a) $\mathrm{f}(x)=x^{3}-2$
The domain of $\mathrm{f}(x)$ is $\quad x \leqslant 3$
Work out the range of $\mathrm{f}(x)$.
\qquad
\qquad

Answer \qquad

10 (b) $\mathrm{g}(x)=5-x^{2}$
The domain of $\mathrm{g}(x)$ is $-2 \leqslant x \leqslant 1$
Work out the range of $\mathrm{g}(x)$.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

11 Here is a sketch of a quadratic curve which has a maximum point at $(-2,5)$

What is the equation of the normal to the curve at the maximum point? Circle your answer.

$$
x=-2 \quad y=5 \quad x=5 \quad y=-2
$$

Turn over for the next question

12 The diagram shows a solid hemisphere.
The diameter is $12 a \mathrm{~cm}$
The volume is $486 \pi \mathrm{~cm}^{3}$

Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

13	Simplify fully $\quad \frac{x-x^{3}}{2 x+2 x^{2}}$	
	You must show your working.	[4 marks]

Answer \qquad

Turn over for the next question

14 Here is a triangle.

Not drawn
accurately

Use the cosine rule to work out the ratio $b^{2}: a^{2}$
Use the cosine rule to wor out the raio $b^{2}: a^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad : \qquad

15 Rearrange $m=\frac{2 p+1}{p}+\frac{p+5}{3 p} \quad$ to make p the subject.

Answer \qquad

16 The curve $y=2 \sqrt{x-a}+5$ passes through the point (1, 8)
Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

17 Show that $(x+1)(x+3)(x+4)-x\left(x^{2}+7 x+11\right)$ can be written in the form $\quad(x+a)(x+b) \quad$ where a and b are positive integers.
[5 marks]
\qquad

18 Solve $\quad 4(x-5)^{2}=k^{2} \quad$ where k is a constant.
Give your answers in their simplest form in terms of k.
Do not write outside the box
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

$19 \quad A B C$ is a right-angled triangle.
$A C D$ is an isosceles triangle.
All dimensions are in centimetres.

Not drawn accurately

19 (a) Show that $A C=5 x$
\qquad
\qquad
\qquad

19 (b) Work out an expression, in cm^{2}, for the area of quadrilateral $A B C D$. Give your answer in the form $p x^{2} \quad$ where p is an integer.
\qquad

Answer
cm^{2}

Turn over for the next question
$20 \quad A, B, C$ and D are points on a circle.
D, E and F are points on different circle, centre C.
$D C E, A D F$ and $B C F$ are straight lines.
angle $D E F=x$
Not drawn accurately

20 (a) Prove that angle $B A D=2 x$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

20 (b) In the case when $A B$ is parallel to $D E$, work out the size of angle x.
Do not write
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees

Turn over for the next question

21 ABCDEFGH is a cuboid.

$$
B C=15 \mathrm{~cm} \quad C D=12 \mathrm{~cm} \quad D H=8 \mathrm{~cm}
$$

Work out the size of the angle between the line CE and the plane CDHG.
\qquad

Answer \qquad degrees

22 (a) Show that $\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}$ is equivalent to $\tan x$
Do not write

22 (b) Hence solve $\quad \frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=-1 \quad$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

23 A circle has centre C and equation $(x-1)^{2}+(y+3)^{2}=25$
$P(4,-7)$ and Q are points on the circle.
The tangent at Q is parallel to the x-axis.
The tangents at P and Q intersect at point R.

Not drawn accurately

23 (a) Write down the coordinates of C.

Answer \qquad

24 Show that the curve $y=\frac{3}{5} x^{5}+x^{4} \quad$ has exactly two stationary points.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$25 \quad \mathrm{f}(x)=x^{3}-10 x-c \quad$ where c is a positive integer. $(x+c)$ is a factor of $\mathrm{f}(x)$.

Use the factor theorem to work out the value of c.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$26 \quad \mathrm{f}(x)$ is a function with domain all values of x.

$$
\mathrm{f}(x)=\sqrt{x^{2}+6 x-a} \quad \text { where } a \text { is a constant. }
$$

Work out the possible values of a.
Give your answer as an inequality.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

27 The curve $y=\mathrm{f}(x)$ has $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+2)^{6}+(x+2)^{4}$
The curve has exactly one stationary point at P where $x=-2$
Use the expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to show that P is a point of inflection.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

