AQA

Please write clearly in blo	capitals.	
Centre number	Candidate number]
Surname		_
Forename(s)		_
Candidate signature		- ,

Level 2 Certificate FURTHER MATHEMATICS

Paper 2

Calculator

Thursday 21 June 2018

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- · Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.

IB/M/Jun18/E5

Time allowed: 2 hours

836	0/2
-----	-----

Afternoon

Trigonometric Identities

 $\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \sin^2 \theta + \cos^2 \theta = 1$

2 P(-3, -10) and Q(a, b) are points on a straight line with gradient 12

Work out one possible pair of integer values for a and b.

[2 marks]

a = _____

[4 marks]

Turn over for the next question

Turn over ►

6	$f(x) = x^2 - 7$ for all values of x	
	$g(x) = 1 - 3x$ for $-4 \le x \le 4$	
6 (a)	Work out the range of f(<i>x</i>). Give your answer as an inequality.	[1 mark]
	Answer	
6 (b)	Work out the range of $g(x)$.	
	Give your answer as an inequality.	[2 marks]
	Answer	

Turn over ►

11	Expand and simplify fully	(x+2)(x+3)(x+4)	[3 marks]
	Answer		

12 (a) Write
$$\frac{7}{9x} \pm \frac{2}{3x^2}$$
 as a single fraction in its simplest form.
[3 marks]
Answer _______
12 (b) Show that $\frac{x^4}{x+4} \times \frac{x+2}{x} \pm \frac{x^2}{3x+12}$
simplifies to the form $ax^2 \pm bx$ where *a* and *b* are integers. [4 marks]

Turn over ►

13 (b)	0 How many solutions of sin $x = p - 1$ are between 0° and 180° ? You may use a sketch graph to help you.	[1 mark]
13 (c)	Answer State the coordinates of each point where the graph $y = \cos x$ for $0^\circ \le x \le 360^\circ$	
	meets or intersects an axis.	[2 marks]
	Answer	

14 (a)	Factorise fully $12pq^3r - 18pq^2r^2 + 24pq^2r$	[2 marks]
	Answer	-
14 (b)	Factorise fully $6(y+3)^5 + 4(y+3)^4$	
	Do not attempt to expand $(y+3)^5$ or $(y+3)^4$	[3 marks]
	Answer	-
14 (c)	Factorise fully $48 - 75x^2$	[2 marks]
	Answer	

Turn over ►

16	$A = 2 - 5x$ $B = 3x - 1$ $C = x^2$	
	Show that $(2A + 3B)^2 \equiv A + B + C$	[4 marks]
17	A circle has equation $x^2 + y^2 = 29$ <i>P</i> is the point (-5, 2)	
17 (a)	Show that <i>P</i> is on the circle.	14
		[1 mark]

Work out the *x*-coordinate of *Q*. You **must** show your working.

[4 marks]

Answer

18 (a)	Work out all the integer values of <i>x</i> for which	
	$-5 < 4x + 3 \leq 13$	
		[3 marks]
	Answer	_
18 (b)	Work out the range of values of <i>x</i> for which	
	$x^2 - 11x + 28 > 0$	
	You must show your working.	
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
		[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must snow your working.	[3 marks]
	You must show your working.	[3 marks]

19 Use **matrix multiplication** to show that, in the x-y plane,

- a reflection in the line y = -x, followed by
- a rotation, 90° anticlockwise about the origin, followed by
- a reflection in the *x*-axis

is equivalent to a transformation by the identity matrix.

[5 marks]

Turn over for the next question

Turn over ►

20	(b)	Calculate the size of the angle between the planes UMR and UQR.				
		Answerdegrees				
		Turn over for the next question				

21 The continuous curve y = f(x) has exactly two stationary points.

Here is some information about the curve.

<i>x</i> < –1	x = -1	-1 < <i>x</i> < 2	<i>x</i> = 2	<i>x</i> > 2
$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}y}{\mathrm{d}x}$
is positive	is zero	is negative	is zero	is negative

f(-1) = 3 and f(2) = 1

State the coordinates **and** the nature of each of the stationary points.

[3 marks]

stationary point	(,,	_)	nature	
stationary point	(,	_)	nature	

22 (a)	$8 \cos x + 5 \sin x = 0$ where $90^{\circ} < x < 180^{\circ}$	
	Work out the size of angle <i>x</i> .	[3 marks]
	Answerdegrees	
22 (b)	6 $\sin^2 x + 4 \cos^2 x \equiv A + B \cos^2 x$ where A and B are integers. Work out the values of A and B. You must show your working.	[2 marks]
	A = B =	

ſ

23	For each of these two function machines, when the input is a the output is b	
23	For each of these two function machines, when the input is u the output is v .	
	$\kappa > 0$ and $\kappa \neq 1$ and $a > 0$	
	Input Output	
	(a) square add 3 multiply by k b	
	Input Output	
	$ \begin{array}{c c} a \end{array} \rightarrow \begin{array}{c} \text{multiply by } k \end{array} \rightarrow \begin{array}{c} \text{square} \end{array} \rightarrow \begin{array}{c} \text{add 3} \end{array} \rightarrow \begin{array}{c} b \end{array} $	
	Work out an expression for a in terms of k . Give your answer in its simplest form	
	[6 marks]	
	Answer	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

