AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature \qquad

Level 2 Certificate FURTHER MATHEMATICS

Paper 2 Calculator

Monday 19 June 2017

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.

Morning

Formulae Sheet

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Area of triangle $=\frac{1}{2} a b \sin C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Trigonometric Identities
$\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \quad \sin ^{2} \theta+\cos ^{2} \theta \equiv 1$

Answer all questions in the spaces provided.

1 (a) The nth term of a sequence is $\frac{3-5 n}{2}$

Work out the difference between the 20th term and the 8th term.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

1 (b) The nth term of another sequence is $\frac{3 n}{1-2 n}$
Write down the limiting value of the sequence as $n \rightarrow \infty$

Answer \qquad

Turn over for the next question
2
$A=\left(\begin{array}{ll}4 & -1 \\ 3 & -2\end{array}\right)$
$B=\binom{5}{2}$

2 (a) Work out A^{2}

Answer \qquad

2 (b) $k \mathbf{B}=\binom{11-3 k}{11-6 k}$ where k is a constant.
Work out the value of k.

Answer \qquad

2 (c) Give a reason why it is not possible to work out BA

Turn over for the next question

3 (a) p, q and r are all integers greater than 1
$p q r=1365$

Work out one possible set of values for p, q and r.
\qquad
\qquad
\qquad
\qquad
\qquad
$p=$ \qquad $q=$ \qquad $r=$ \qquad

3 (b) $\quad a$ and b are both square numbers greater than 1
$a b-11 b$ is also a square number.

By factorising $a b-11 b$, work out one possible pair of values for a and b. You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$a=$ $b=$ \qquad
$4 \quad$ Solve $\quad \frac{56}{\sqrt[3]{x}}=4$
\qquad
\qquad
\qquad
\qquad
$x=$ \qquad

Turn over for the next question

$5 M$ is the midpoint of $P Q$.

Work out the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

6 A cone has vertex V.
C is the centre of the base.
The slant height, $V A$, is 20 cm
The angle between VA and VC is 38°

Work out the radius of the base.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad cm

7 The equation of the line through B, P and A is $4 x+5 y=40$ $B P: P A=2: 3$

Work out the area of triangle $O B P$.
[4 marks]
\qquad

8 The perimeter of a triangular flower bed, $A B C$, is marked out using 27 metres of rope.

Work out the size of angle BAC.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees

Turn over for the next question

$9 \quad-11<5 x \leqslant 5 \quad$ and $\quad 6 x+7 \leqslant 4 x+4$

Show that there is exactly one integer that x can be.
\qquad
$10 \quad A B C$ is an isosceles triangle with $A B=A C$
The area of $A B C$ is $57.76 \mathrm{~cm}^{2}$

Not drawn accurately

Work out the length of $A B$.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad cm

Turn over for the next question

11 A function $\mathrm{f}(x)$ is defined as

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =3-2 x & -2 \leqslant x<0 \\
& =(1+x)(3-x) & 0 & 0 \leqslant x<4 \\
& =5 x-25 & & 4 \leqslant x \leqslant 5
\end{array}
$$

11 (a) Draw the graph of $y=\mathrm{f}(x)$ on the axes below.

11 (b) State the range of $\mathrm{f}(x)$
\qquad

12 (a) Factorise fully $75-3 x^{2}$
\qquad
\qquad
\qquad

Answer \qquad

12 (b) Simplify fully $(3 n+1)^{2}-(3 n-1)^{2}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

13 Simplify fully $\frac{8 a}{3 a+6} \times \frac{5 a+10}{3 a^{2}} \div \frac{4}{15 a^{3}}$

Answer

14 The line $y=a x+b$ is perpendicular to the line $x+4 y=74$
The lines intersect at the point where $x=2$

Not drawn accurately

Work out the values of a and b.
\qquad

$$
a=
$$ $b=$ \qquad

15 Rearrange $w=\frac{8 x-y}{y} \quad$ to make y the subject.

Answer \qquad

16 (a) $a=3^{2 b}$
Circle the correct expression for $\frac{1}{a}$

$$
3^{2 b-1}
$$

$3^{-2 b}$
$-3^{2 b}$
$\left(\frac{1}{3}\right)^{-2 b}$

16 (b) $y=5^{x}$
Circle the correct expression for $25 y$

$$
5^{x+2} \quad 25^{x} \quad 5^{2 x} \quad 125^{x}
$$

16 (c) $w=2^{m}$
Circle the correct expression for w^{3}
$8^{3 m}$
6^{m}
2^{m+3}
$2^{3 m}$

17 Here is a sketch of $y=x^{3}-6 x^{2}+7$

Not drawn accurately

17 (a) Use differentiation to work out the coordinates of the stationary point that is a minimum. You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer (\qquad , \qquad)

17 (b) The three roots of $x^{3}-6 x^{2}+7=0$ are the x-coordinates of the points where the graph intersects the x-axis.

Show that $x=-1$ is one root of $x^{3}-6 x^{2}+7=0$
\qquad
\qquad

17 (c) Hence, work out the other two roots of $x^{3}-6 x^{2}+7=0$
Give your answers to 2 decimal places.
You must show your working.
\qquad

Answer

18 The diagram shows a rectangle with a diagonal drawn.
The given expressions for the measurements are in centimetres.

Not drawn accurately

Work out an expression for the area of the rectangle, in cm^{2}
Give your answer in its simplest form, in terms of y.
\qquad

Answer cm^{2}
$19 \quad$ Here is a sketch of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

α is an acute angle measured in degrees.
$\sin \alpha=k \quad$ where k is a constant.
Write the answers to each of the following in terms of k, without involving trigonometric functions.

19 (a) $\sin \left(180^{\circ}-\alpha\right)$

Answer \qquad

19 (b) $\sin \left(360^{\circ}-\alpha\right)$

Answer

\qquad

19 (c) $\quad \cos \alpha$

20 Two circles overlap.
A, B and E lie on the circle, centre O.
B, C, D and E lie on the other circle.
$A O B C$ and $A E D$ are straight lines.
$C D=C E$
angle $B A E=x$

20 (a) Give a reason why angle $B E A=90^{\circ}$
\qquad
\qquad

20 (b) Prove that angle $D C E=2 x$
\qquad

Turn over for the next question

21 Here is a sketch of $y=(x+2)(4-x)$
The graph intersects the axes at $A(-2,0), B(4,0)$ and C.

21 (a) Work out the coordinates of C.
[1 mark]

Answer (\qquad , \qquad)

21 (b) Work out the gradient function of the curve.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

21 (c) The normal to the curve at C intersects the x-axis at D. Show that length $B D=2 \times$ length $A B$
\qquad

22 The equation of a circle is $(x-2)^{2}+(y-1)^{2}=16$
The equation of a line is $y=2 x+1$
The circle and the line intersect at two points.

Work out the coordinates of the two points.
You must show your working.
Do not use trial and improvement.
\qquad

Answer (\qquad , \qquad) and \qquad , \qquad)

23 In this question, $\tan x \neq 0$ and $\sin x \neq 0$

Show that $\frac{1}{\tan ^{2} x}-\frac{1}{\sin ^{2} x}$ is a constant.

24 Write $12 x^{2}-60 x+5$ in the form $a(b x+c)^{2}+d \quad$ where a, b, c and d are integers. [5 marks]
\qquad

Answer \qquad

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE

ANSWER IN THE SPACES PROVIDED

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

