## AQA

# LEVEL 2 CERTIFICATE Further Mathematics 

Paper 1 8360/1 Non-calculator
Mark scheme

8360
June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M
M dep

## A

B

B dep
ft

SC
oe
[a, b]
3.14...

Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$
Method marks are awarded for a correct method which could lead to a correct answer.

A method mark dependent on a previous method mark being awarded.

Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

Marks awarded independent of method.

A mark that can only be awarded if a previous independent mark has been awarded.

Follow through marks. Marks awarded following a mistake in an earlier step.

Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Accept values between $a$ and $b$ inclusive.

Accept answers which begin 3.14 eg $3.14,3.142,3.1416$

Examiners should consistently apply the following principles.

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

## Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

## Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then $M$ marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

## Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 1 | Any straight line of gradient $\frac{3}{4}$ or a correct point plotted, other than $(2,1)$ | M1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Line through $(2,1)$ and ( $-2,-2$ ) or line through $(2,1)$ and $(6,4)$ | A1 | this is the minimum length required |  |
|  | Additional guidance |  |  |  |
|  | $y=\frac{3}{4} x-\frac{1}{2} \quad$ oe $\quad$ scores SC1 <br> A line of gradient $-3 / 4$, through $(2,1)$, tolerance as below, scores SC1 <br> If they draw the correct line and the $-3 / 4$ line then award 1 mark only Tolerance of $1 / 4 \mathrm{~cm}$ square at two of the three points $(2,1),(6,4)$ and $(-2,-2)$ |  |  |  |


| 2 | $2 a x$ or +3 | M1 | either term correct |
| :---: | :--- | :---: | :--- | :--- |
|  | their $2 a(-1)+3=-5$ | M1dep | oe <br> two terms needed here $\ldots$ an $x$ term with -1 <br> substituted and a constant term |
|  | $(a=) 4$ | A1 |  |
|  | Additional guidance <br> A 1st line of $2 a+3$ followed by $2 a+3=-5$ can only score M1 M0 A0 |  |  |


| 3(a) | Fully correct curve with all intersections labelled <br> ie. -9 and 2 on the $x$-axis and -18 on the $y$-axis | B3 | B2 for two correct $x$-axis points of intersection labelled <br> (they must have a quadratic graph drawn in the correct orientation) <br> B1 for U shaped curve, in the correct orientation, crossing $y$-axis at -18 , (the $x$-axis crossing points not labelled) <br> or two of the three $x$ or $y$ axis crossing points marked or stated ... eg this could be $(2,0)$ and $(0,-18)$ seen in a table of values <br> or $\quad(x+a)(x+b)$ <br> with $a b=-18$ or $a+b=+7$ |
| :---: | :---: | :---: | :---: |

## Additional guidance

Table of values, points plotted and graph drawn, fully correct, scores all 3 marks Minimum point must be to the left of the $y$-axis to score full marks.
Both sides of the graph must be drawn above the $x$-axis to score full marks Maximum of B1 if no graph drawn eg $x=-9$ and $x=2$ stated, but no graph

| 3(b) | $x=-3.5$ | B1 | oe |
| :--- | :--- | :---: | :--- | :--- |
|  | Additional guidance |  |  |
|  | It must be $x=-3.5$, do not accept $y=-3.5$ or -3.5 on its own |  |  |


| 4 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | Intention to work out gradient or reciprocal of gradient <br> or <br> Intention to work out the equation of the straight line | M1 | Condone one sign error in the calculation eg $\begin{aligned} & \frac{-5-7}{6--4} \text { or } \frac{-5-t}{6-8} \text { or } \frac{7-t}{-4-8} \text { or }-1.2 \text { oe } \\ & \text { eg } 7=-4 m+c \text { or }-5=6 m+c \\ & \text { eg } y-7=m(x--4) \end{aligned}$ |
|  | A correct value for $m$ or a correct expression for $m$ <br> and <br> an expression to calculate the value of $t$ or the value of $c$ <br> or $m=-1.2 \text { and } c=2.2$ | M1dep | eg. $(m=) \frac{7--5}{-4-6}$ or $(m=) \frac{-6}{5} \quad$ oe and eg $\quad \frac{t--5}{8-6}=\frac{-5-7}{6-4}$ or $t=\frac{-6}{5}(8)+(7-\underline{24})$ or $7=\underline{-6}(-4)+c$ or $-5=\underline{\frac{-6}{5}}(6)+c$ |
|  | $(t=)-7.4 \text { or }-7 \frac{2}{5} \text { or } \frac{-37}{5}$ | A1 |  |
|  | Alternative method 2 |  |  |
|  | -4 to 6 is +10 and 7 to -5 is -12 | M1 | oe Condone a sign error |
|  | 6 to 8 is +2 and -5 to $t$ is $\frac{-12}{5}$ | M1 | oe |
|  | $(t=)-7.4 \text { or }-7 \frac{2}{5} \text { or } \frac{-37}{5}$ | A1 |  |
|  | Alternative method 3 |  |  |
|  | $\sqrt{ }\left[(-4-6)^{2}+(7--5)^{2}\right] \quad(=\sqrt{ } 244)$ <br> and stating -4 to 6 is 10 and 6 to 8 is 2 | M1 | Correct use of Pythagoras and identifying the correct displacements |
|  | $\sqrt{ }\left[(6-8)^{2}+(-5-t)^{2}\right]=(\sqrt{ } 244) \div 5$ | M1 | ft their 244 |
|  | $(t=)-7.4 \text { or }-7 \frac{2}{5} \text { or } \frac{-37}{5}$ | A1 |  |


| Additional guidance |  |
| :---: | :---: |
| -7.4 seen on answer line is 3 marks <br> -7.4 seen in the working but sign error on answer line is 3 marks <br> 'Algebraic method' means the question must not be done graphically ... although a diagram is fine when used to do the gradient calculations $\frac{t--5}{8-6}=\frac{t-7}{8--4} \text { seen implies M1 M1 }$ <br> Look at any diagram they may have drawn for evidence of the alt 2 method $\frac{7--5}{-4-6} \text { (correct expression) }=1.2 \text { (error) followed by } 7=(1.2)(-4)+c$ <br> scores M1 M1 but will not lead to a correct final answer, so A0 <br> $m=-1.2$, but they use 1.2 instead $\ldots 7=1.2(-4)+c$ giving $c=11.8$ is M1 M1 A0 <br> $m=-1.2$, then $t=-1.2+11.8=2.2$ scores M1 M1 A0 because this is a correct method for calculating $c$, and so scores the 2nd M1, even though they think they are calculating $t$ $m=\frac{-5-7}{6--4}=\frac{-12}{10} \frac{-12}{10} \times 2=\frac{-24}{20}=\frac{-6}{5}=-1.2 \text { so } t=-5-1.2=-6.2 \mathrm{M} 1 \mathrm{M} 1 \mathrm{~A} 0$ <br> $\ldots$ because the only error is $\frac{-12}{10} \times 2=\frac{-24}{20} \ldots$ if this had been -2.4 then $t=-7.4$ |  |


| 5 | $\left(x^{3}+\right) 4 x^{2}-k x^{2}-4 k x-5 x(-20)$ | M1 | or $4-k$ and $-4 k-5$ seen as coefficients |
| :---: | :---: | :---: | :---: |
|  | $4-k=2(-4 k-5)$ | M1dep | ft their expansion if first M mark earned |
|  | $(k=)-2$ | A1 |  |
|  | Additional guidance |  |  |
|  | Condone one sign error in the first two steps Ignore errors in $x^{3}$ and -20 for the first M1 |  |  |


| 6 | $\begin{aligned} & (x+6)^{3}[x+6+3 x+4] \text { or } \\ & (x+6)^{2}\left[(x+6)^{2}+(x+6)(3 x+4)\right] \text { or } \\ & (x+6)\left[(x+6)^{3}+(x+6)^{2}(3 x+4)\right] \end{aligned}$ | M1 | for sight of $(x+6)^{3},(x+6)^{2}$ taken out as a common factor | $\text { or }(x+6)$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $(x+6)^{3}[4 x+10]$ | A1 |  |  |
|  | $2(x+6)^{3}(2 x+5)$ | A1 |  |  |
|  | Additional guidance |  |  |  |
|  | $(x+6)^{3}(x+6)(3 x+4) \quad$ implies M1 <br> SC1 for all correct factors seen in working but never written as a product of terms An attempt to expand brackets will be M0 unless the expansion leads to a correct solution worth 2 or 3 marks $(x+6)^{3}[x+6+4 x+3]$ scores M1 ... ignore the error in the 2 nd bracket |  |  |  |


| 7(a) | $x \geqslant \frac{5}{2}$ | B1 |  |  |
| :--- | :--- | :---: | :---: | :---: |
|  | Additional guidance |  |  |  |
|  |  |  |  |  |


| 7(b) | $1.2^{2}=2 x-5$ or $1.44=2 x-5$ | M1 | oe |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $(x=) 3.22$ | A1 | oe eg $\frac{161}{50}$ |  |
|  | Additional guidance |  |  |  |
|  |  |  |  |  |



| 2nd difference $=8$ or $a=4$ | M1 | sight of $4 n^{2}$ implies this mark |
| :---: | :---: | :---: |
| subtract their $4 n^{2}$ <br> or sight of three of 6172839 | M1 | subtracting 4163664 <br> the coefficient of their $4 n^{2}$ will come from half the value of their 2nd difference |
| subtract their $11 n$ or $b=11$ <br> or tests $4 n^{2}+11 n$ and compares to original sequence <br> or sight of three of 153869108 | M1dep | dep on 2nd M mark |
| $4 n^{2}+11 n-5$ | A1 |  |
| Alternative method 2 |  |  |
| Any three of these $\begin{aligned} & a+b+c=10 \\ & 4 a+2 b+c=33 \\ & 9 a+3 b+c=64 \\ & 16 a+4 b+c=103 \end{aligned}$ | M1 |  |
| Any two of these $3 a+b=23$ $5 a+b=31 \quad 7 a+b=39$ | M1dep |  |
| $a=4$ and $b=11$ | A1 |  |
| $4 n^{2}+11 n-5$ | A1 |  |

## Alternative method 3

| $a=4$ | M 1 |  |
| :--- | :---: | :--- |
| $3 a+b=33-10$ <br> and substitutes their $a$ in this equation | M 1 | oe |
| $b=11$ | A 1 |  |
| $4 n^{2}+11 n-5$ | A 1 |  |

## Additional guidance

SC3 for $4 n^{2}-11 n+5$
Condone $4 x^{2}+11 x-5$ or eg $4 x^{2}+11 n-5$ (mixed letters)

| $\mathbf{9 ( a )}$ | $2 x^{2}-3 x+2 x-3$ | B1 | terms can be written in any order |
| :---: | :--- | :---: | :--- | :--- |
|  | Additional guidance |  |  |
|  | Must show all four terms. |  |  |
|  |  |  |  |



| 10 | $(3,0)$ marked or used | B1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | radii 6 and 8 identified | B1 | oe |  |
|  | $\sqrt{ }\left(6^{2}+8^{2}\right)$ or $6,8,10$ triangle or 10 | M1 |  |  |
|  | $(h=) 13$ or $\mathrm{M}=(13,0)$ | A1 | might be seen in the working or on the diagram |  |
|  | Additional guidance |  |  |  |
|  | $(3,0)$ can be implied eg $L M=h-3$ or $O M=3+$ their $L M$ Look on the diagram for evidence of the B marks ( $h=$ ) 13 with no working is 4 marks ( -13 with no working is 0 marks) |  |  |  |

## Alternative method 1

| common denominator $(x-3)(x-5)$ oe | M1 | allow $(x-3)^{2}(x-5)$ oe |  |
| :--- | :---: | :--- | :--- |
| numerator $x(x-5)+6$ or $x^{2}-5 x+6$ | M1dep | allow $x(x-3)(x-5)+6(x-3) \quad$ oe |  |
| $\frac{(x-3)(x-2)}{(x-3)(x-5)}$ | A1 | $\frac{(x-3)^{2}(x-2)}{(x-3)^{2}(x-5)}$ |  |
| $\frac{x-2}{x-5}$ | A1 |  |  |

## Alternative method 2

| $\frac{1}{(x-3)}\left(x+\frac{6}{(x-5)}\right)$ | M1 |  |
| :--- | :--- | :--- |
| $\frac{1}{(x-3)}\left(\frac{x(x-5)+6}{(x-5)}\right)$ | M1 |  |
| or $\frac{1}{(x-3)}\left(\frac{x^{2}-5 x+6}{(x-5)}\right)$ | A1 |  |
| $\frac{(x-3)(x-2)}{(x-3)(x-5)}$ | A1 |  |
| $\frac{x-2}{x-5}$ |  |  |

## Additional guidance

Further work eg answer of $\underline{-2}$ means the final A1 must not be awarded $-5$

$$
\frac{x(x-5)}{(x-3)(x-5)}+\frac{6}{(x-3)(x-5)} \text { scores M1 M1 }
$$

Either ... follow the LHS of the mark scheme for the first three steps
Or ... follow the RHS
... do not mix expressions ... the numerators and denominators must match



| 12(c) | $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ | Additional guidance |  |  |
| :--- | :--- | :---: | :---: | :---: |
|  | If no working or answer seen in (c), look at (b) ... the matrix for $\mathrm{M}^{2}$ might be <br> written there, and, if correct, will score B1 in (c)   |  |  |  |

Handling the negative power first ...

| Handling the negative power first ... <br> $\frac{1}{x^{\frac{1}{4}}}=0.2 \quad$ or $\quad \frac{1}{x^{\frac{1}{4}}}=\frac{1}{5}$ <br> or $\quad \frac{1}{0.2}=x^{\frac{1}{4}} \quad$ or $\quad 5=x^{\frac{1}{4}}$ <br> or $\quad \frac{1}{\sqrt[4]{x}}=0.2 \quad$ or $\quad \sqrt[4]{x}=\frac{1}{0.2}$ | M1 | Handling the 4th root first $x^{-1}=0.2^{4} \quad \text { or } \quad x=0.2^{-4}$ |
| :---: | :---: | :---: |
| All of these are valid 2nd steps following any of the above 1st steps $\frac{1}{x}=0.2^{4} \quad$ or $\quad \frac{1}{x}=\frac{1}{5^{4}} \quad$ or $\quad x=5^{4}$ or $\quad x=\frac{1}{0.2^{4}} \quad$ or $\quad x=\left(\frac{1}{0.2}\right)^{4}$ | M1 |  |
| $(x=) 625$ | A1 |  |
| Additional guidance |  |  |
| The two method marks are for handling the negative power and for handling the 4th root ... and an error in one of the 1st steps does not mean that you cannot give credit for a correct 2nd step <br> eg $-\sqrt[4]{x}=0.2$ (incorrect) followed by $x=0.2^{4}=0.0016$ scores M0 M1 $-\sqrt[4]{x}=0.2$ (incorrect) followed by $-x=0.2^{4}=0.0016, x=-0.0016$ is M0 M0 because the 4 th power of $-\sqrt[4]{x}$ would be a positive quantity |  |  |


| 14 | $A B=\sqrt{3}$ | B1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Any one of these responses ... $\begin{array}{ll} \frac{B D}{2 \sqrt{3}}=\cos 30^{\circ} & \frac{B D}{2 \sqrt{3}}=\sin 60^{\circ} \\ \frac{\sqrt{3}}{B D}=\tan 30^{\circ} & \frac{B D}{\sqrt{3}}=\tan 60^{\circ} \\ B D & B D^{2}+(\sqrt{ } 3)^{2}=(2 \sqrt{ } 3)^{2} \end{array}$ | M1 | ... or these ...$\begin{array}{lll} \begin{array}{ll} \frac{B D}{2 \sqrt{3}}=\frac{\sqrt{3}}{2} & \frac{B D}{\sqrt{3}}=\sqrt{ } 3 \end{array} \quad \frac{\sqrt{3}}{B D}=1 \\ -\underline{\sqrt{3 D}}=-\underline{\sqrt{3}} & -\frac{B D}{\sqrt{3} / 2}=-\frac{\sqrt{3}}{1 / 2} \\ \sin 60^{\circ} & \sin 30^{\circ} & \end{array}$ |  |
|  | $B D=3$ | A1 |  |  |
|  | $C D=3-\sqrt{3}$ | A1 | oe |  |
|  | Additional guidance |  |  |  |
|  | SC1 for a final answer of $\underline{2 \sqrt{3} \sin 15^{\circ}}$, possibly with $\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ for $\sin 135^{\circ}$ |  |  |  |




| 16 | $\sin 120^{\circ}=\frac{\sqrt{3}}{2}$ | B1 |  |
| :---: | :---: | :---: | :---: |
|  | $\frac{y}{\sin 120^{\circ}}=\frac{6}{\sin x^{\circ}} \text { or } \frac{y}{\sin 120^{\circ}}=\frac{6}{1 / \sqrt{12}}$ | M1 | oe |
|  | $y=6 \sqrt{ } 12 \times \sin 120^{\circ}$ <br> or $y=12 \sqrt{ } 3 \times \sin 120^{\circ}$ | M1dep | dep on previous M mark ear |
|  | 18 | A1 |  |
|  | Additional guidance |  |  |
|  | They might use a wrong value for $\sin 120^{\circ} \ldots$ eg $\sin 120^{\circ}=1 / 2$ then write eg $=\frac{6}{1 / \sqrt{12}}$ followed by $y=6 \sqrt{ } 12 \times \frac{1}{2}$, this scores M1 M1 because their method is correct ... they will already have lost the B1 mark and will be unable to score the A1 mark <br> Do not condone the use of 120 instead of $\sin 120^{\circ}$ |  |  |


| 17 (a) | $(2 x+a)(x+b)$ | M1 | $a b=5$ or $a+2 b=7$ |  |
| :---: | :--- | :---: | :--- | :--- |
|  | $(2 x+5)(x+1)$ | A1 |  |  |
|  | Additional guidance |  |  |  |
|  | $2(x+2.5)(x+1)$ and $(x+2.5)(2 x+2)$ both score SC1 <br> Ignore subsequent working $\ldots$ eg solving |  |  |  |


| 17 (b) | $(2 \sin \theta+5)(\sin \theta+1)(=0)$ <br> or $2 \sin \theta+5=0 \text { and } \sin \theta+1=0$ | M1 | ft their factors from |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\sin \theta=-1$ | M1 |  |  |
|  | $270^{\circ}$ | A1 | only $270^{\circ}$... no | ) solutions |
|  | Additional guidance |  |  |  |
|  | In (b) they can work with $x$ or $s$ but must eventually use $\sin \theta=-1$ |  |  |  |

## Alternative method 1

| $10 \sqrt{3}$ | B1 |  |
| :--- | :---: | :--- |
| $\frac{(24-\text { their } 10 \sqrt{3})(4 \sqrt{3}+5)}{(4 \sqrt{3}-5)(4 \sqrt{ } 3+5)}$ | M1 | oe |
| $96 \sqrt{3}-120+120-50 \sqrt{3}$ | M1dep | allow one sign error |
| $48-25$ or 23 | M1 |  |
| $2 \sqrt{3}$ | A1 |  |

## Alternative method 2

18

| $\frac{(24-\sqrt{ } 300)(4 \sqrt{ } 3+5)}{(4 \sqrt{ } 3-5)(4 \sqrt{ } 3+5)}$ | M1 |  |  |
| :--- | :---: | :--- | :---: |
| $96 \sqrt{ } 3+120-4 \sqrt{ } 900-5 \sqrt{ } 300$ | M1dep | allow one sign error |  |
| $96 \sqrt{ } 3-120+120-50 \sqrt{ } 3$ | M1 |  |  |
| $48-25$ or 23 | M1 |  |  |
| $2 \sqrt{3}$ | A1 |  |  |
| Additional guidance |  |  |  |
| For the 1 st M1, multiplying numerator and denominator by $(4 \sqrt{ } 3+5)$ <br> could legitimately be replaced by $-4 \sqrt{ } 3-5 \ldots$ almost identical <br> working ... it just changes all the signs on the next lines of working |  |  |  |

