AQA

Please write clearly in	ı block capitals.		
Centre number		Candidate number	
Surname			_
Forename(s)			_
Candidate signature			 -)

Level 2 Certificate FURTHER MATHEMATICS

Paper 1 Non-Calculator

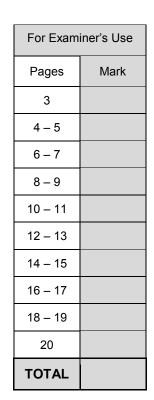
Thursday 15 June 2017

Morning

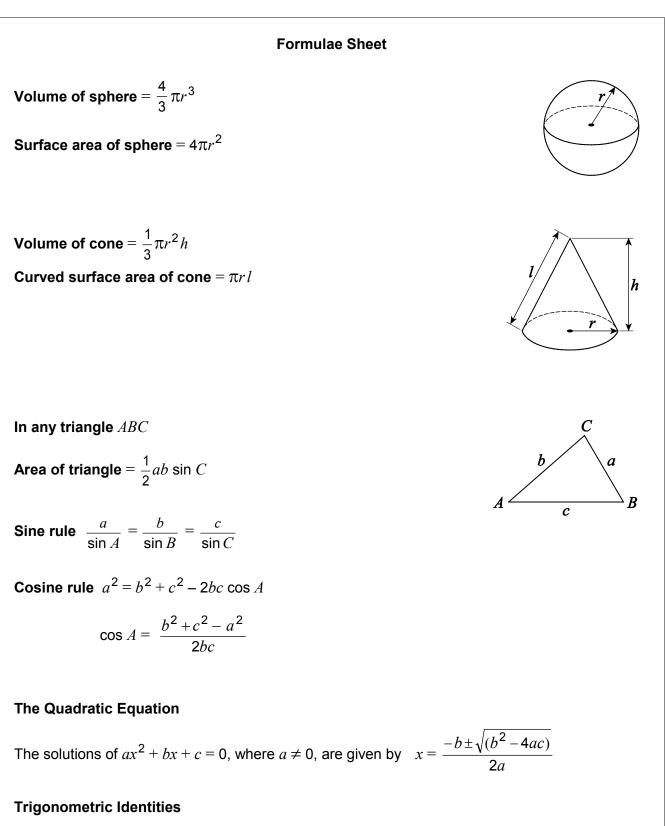
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

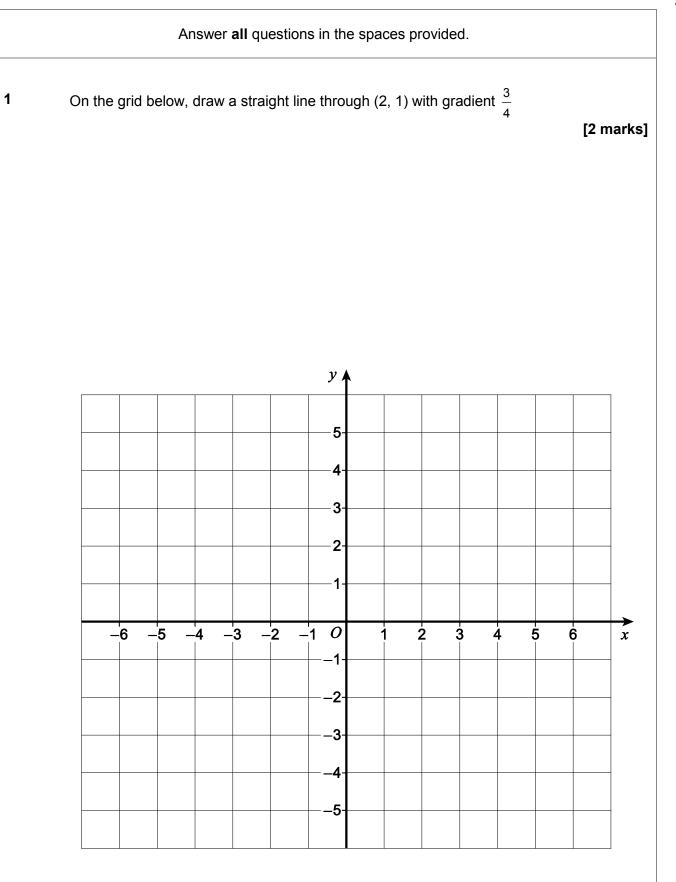

- mathematical instruments.
- You must not use a calculator.

Instructions


- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all guestions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

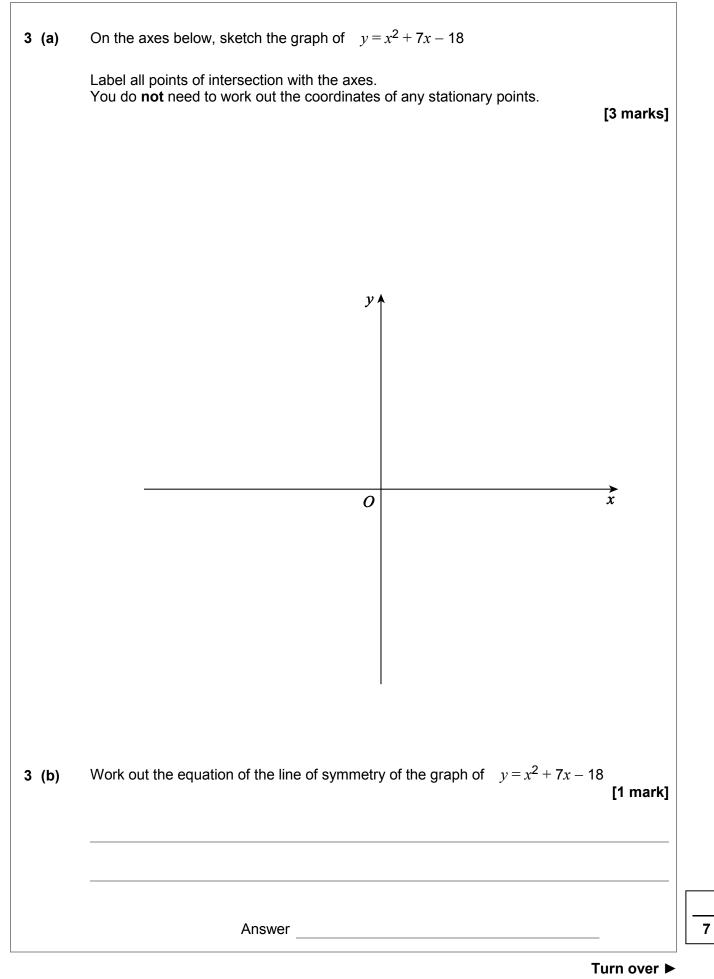
- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.



 $\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \qquad \sin^2 \theta + \cos^2 \theta \equiv 1$

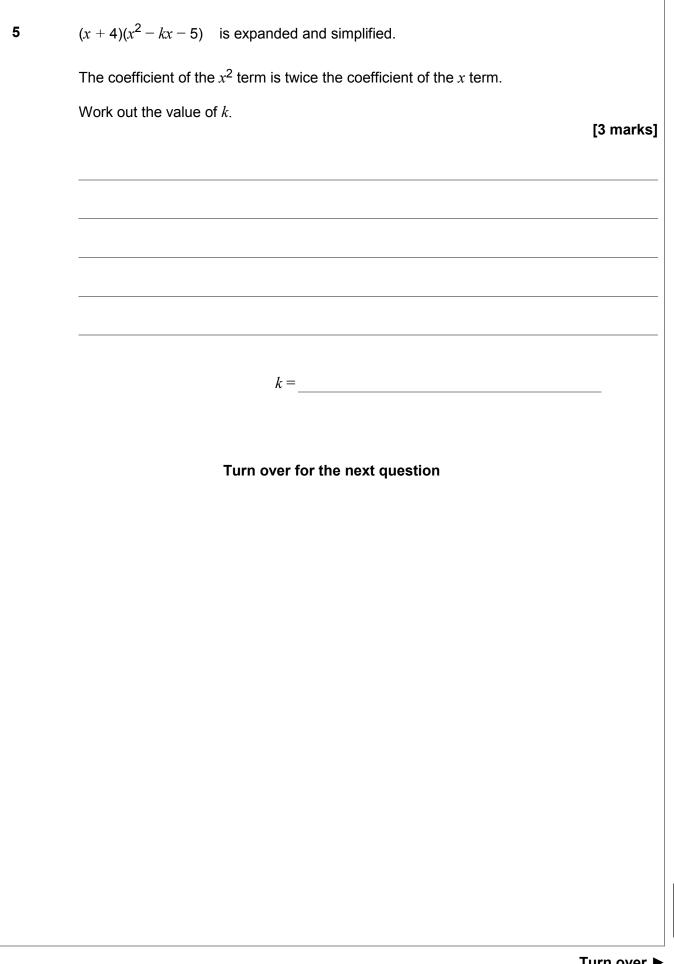
Do not write outside the box

3


Turn over ►

IB/M/Jun17/8360/1

Work out the value of a .		
		I
	a =	


t =

4 A straight line passes through the points (-4, 7), (6, -5) and (8, t)

Use an algebraic method to work out the value of t. You **must** show your working.

[3 marks]

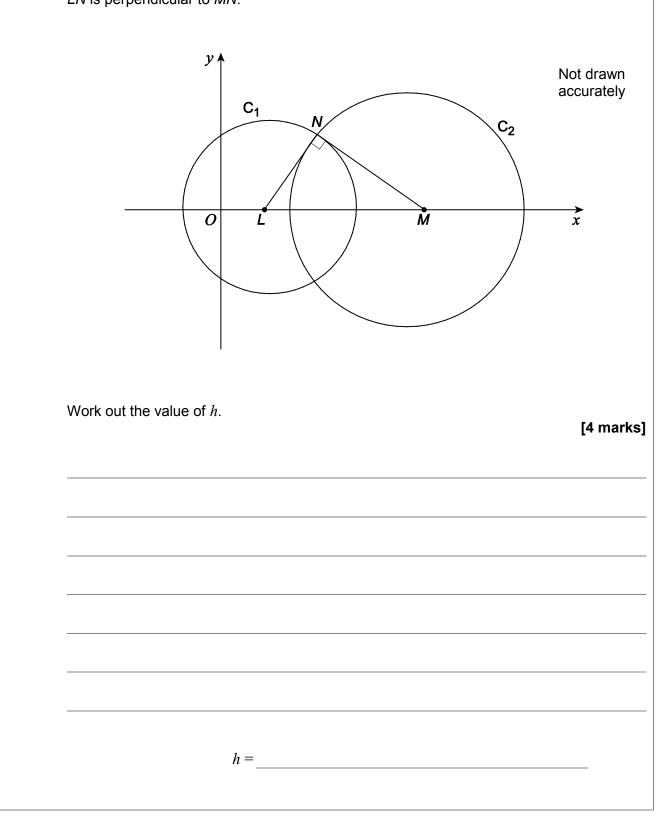
|--|

Do not attempt to	$(x + 6)^4 + (x + 6)^3(3x + 4)$ o expand the brackets.	[3
		[3]
	Answer	

7 7 (a)	The function f is given by $f(x) = \sqrt{2x - 5}$ Which of these inequalities is a possible domain for $f(x)$? Circle the inequality. $x \ge 0$ $x \ge \frac{2}{5}$ $x \ge 2$ $x \ge \frac{5}{2}$	[1 mark]
7 (b)	$x \neq 0$ $x \neq 5$ $x \neq 2$ $x \neq 2$ Work out <i>x</i> when $f(x) = 1.2$	[2 marks]
7 (c)	x = Work out the value of $f(2\frac{5}{2})$	
	Give your answer as a fraction in its simplest form.	[3 marks]
	Answer	

Turn over ►

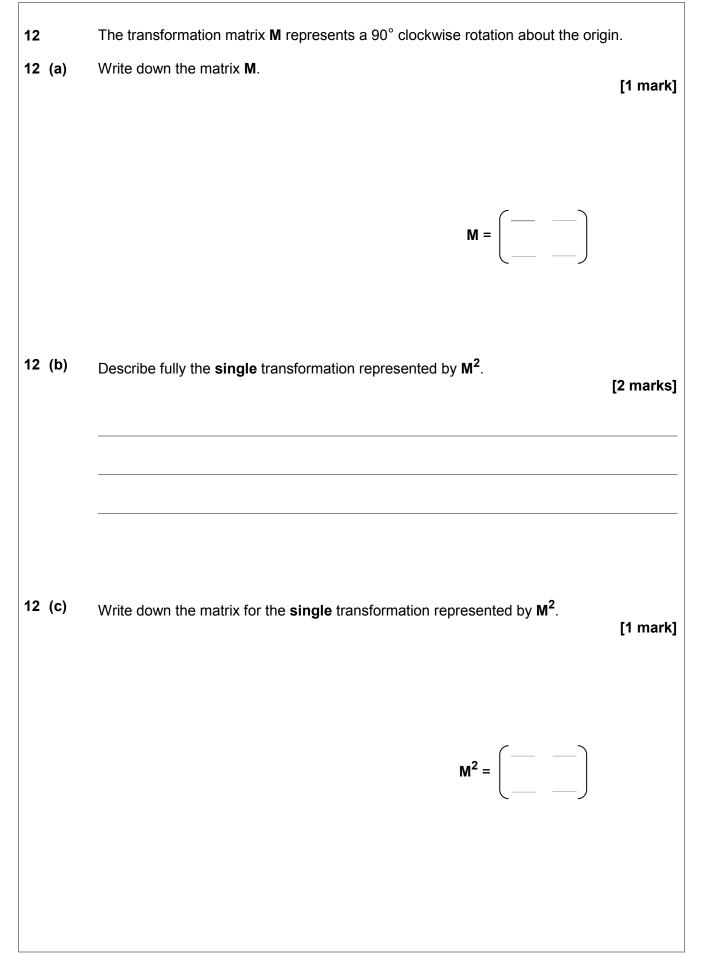
8	The first four terms of a quadratic sequence are	10	33	64	103	
	Work out an expression for the <i>n</i> th term.					[4 marks]
						[1.1.1.1.1.0]
	Answer					



9	Here is a rectangle.	
	(2x-3) cm (x + 1) cm	Not drawn accurately
9 (a)	Show that the area of the rectangle is $2x^2 - x - 3 \text{ cm}^2$	[1 mark]
9 (b)	The area of the rectangle is greater than 7 cm ² Work out the range of possible values of x . Give your answer as an inequality.	[4 marks]
		[+ marks]
	Answer	

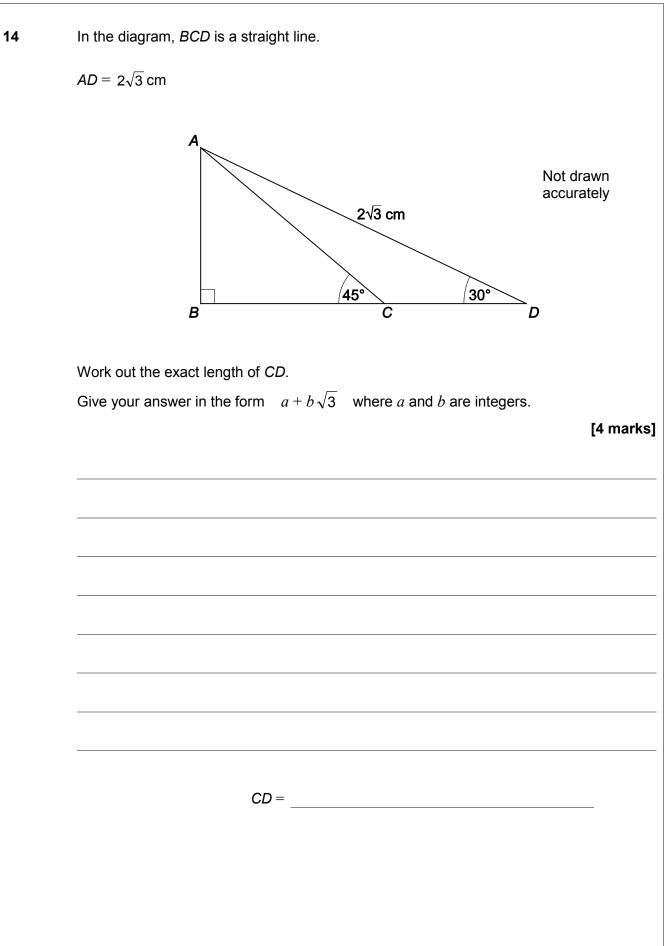
Turn over ►

10 Circle C₁ has centre *L* and equation $(x - 3)^2 + y^2 = 36$ Circle C₂ has centre *M* and equation $(x - h)^2 + y^2 = 64$ where *h* is a constant. The circles intersect at *N*. *LN* is perpendicular to *MN*.


11 Simplify fully
$$\frac{x}{x-3} + \frac{6}{(x-3)(x-5)}$$

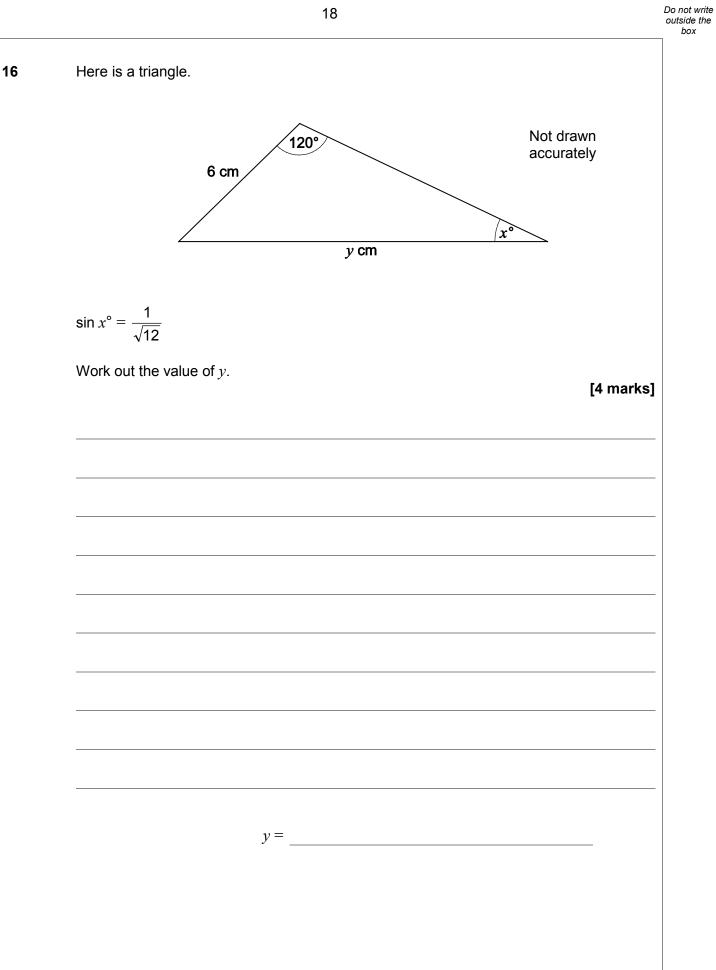
[4 marks]

Answer ____



		_1		
13	Solve	$x^{4} = 0.2$		10
				[3 marks]
			x =	
		Т	urn over for the next question	
			Т	urn over ►

i urn över i



[4 marks]

15The continuous curve y = f(x) has exactly three stationary points.
The three stationary points are
a minimum point P at (a, b) where a < 0 and b < 0
a point of inflection Q at (0, 3)
a maximum point R at (c, d) where c > 0 and d > 3The curve cuts the x-axis at three distinct points.
On the axes below, sketch the curve.
Label the points P, Q and R on your sketch.

y \overrightarrow{x} 0 Turn over for the next question

17 (a)	Factorise $2x^2 + 7x + 5$	[2 marks]
	Answer	
	Answer	_
17 (b)	Hence, or otherwise, work out the value of θ between 0° and 360° for which	
17 (5)		
	$2\sin^2\theta + 7\sin\theta + 5 = 0$	
		[3 marks]
	$\theta =$	
		_
		Turn over ►

18	Simplify fully $\frac{24 - \sqrt{300}}{4\sqrt{3} - 5}$
	Give your answer in the form $a\sqrt{b}$ where <i>a</i> and <i>b</i> are integers. [5 marks]
	Answer
	END OF QUESTIONS
Copyright Infor	mation
separate bookle	y purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a rather than including them on the examination paper or support materials. This booklet is published after each examination series and is download from www.aqa.org.uk after the live examination series.
	produce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and by to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, XJ.

Copyright $\textcircled{\sc opt}$ 2017 AQA and its licensors. All rights reserved.

