A LEVEL

Exemplar Candidate Work
 MATHEMATICS A

H240
For first teaching in 2017

H240/02 Summer 2018 examination series

Version 1

Contents

Question 1 (i) 4
Question 1 (ii) 5
Question 1 (iii) 6
Question 2 (i) 7
Question 2 (ii) 8
Question 2 (iii) 9
Question 3 (i) 11
Question 3 (ii) 12
Question 3 (iii) 13
Question 3 (iv) 14
Question 4 15
Question 5 (i) 17
Question 5 (ii) 18
Question 5 (iii) 19
Question 6 (i) 21
Question 6 (ii) 22
Question 6 (iii) 24
Question 6 (iv) 25
Question 7 27
Question 8 (i)(a) 30
Question 8 (i)(b) 31
Question 8 (i)(c) 32
Question 8 (ii) 34
Question 9 36
Question 10 (i) 38
Question 10 (ii) 39
Question 10 (iii) 40
Question 11 (i)(a) 43
Question 11 (i)(b) 44
Question 11 (ii)(a) 45
Question 11 (ii)(b) 46
Question 11 (ii)(c) 47
Question 12 (i) 48
Question 12 (ii) 49
Question 12 (iii) 50
Question 12 (iv) 51
Question 12 (v) 52
Question 12 (vi) 53
Question 13 (i) 54
Question 13 (ii) 55
Question 13 (iii)(a) 58
Question 13 (iii)(b) 60

Introduction

These exemplar answers have been chosen from the summer 2018 examination series.

OCR is open to a wide variety of approaches and all answers are considered on their merits. These exemplars, therefore, should not be seen as the only way to answer questions but do illustrate how the mark scheme has been applied.

Please always refer to the specification http://www. ocr.org.uk/Images/308723-specification-accredited-a-level-gce-mathematics-a-h240.pdf for full details of the assessment for this qualification. These exemplar answers should also be read in conjunction with the sample assessment materials and the June 2018 Examiners' report or Report to Centres available from Interchange https:// interchange.ocr.org.uk/Home.mvc/Index

The question paper, mark scheme and any resource booklet(s) will be available on the OCR website from summer 2019. Until then, they are available on OCR Interchange (school exams officers will have a login for this and are able to set up teachers with specific logins see the following link for further information http://www. ocr.org.uk/administration/support-and-tools/interchange/ managing-user-accounts/).

It is important to note that approaches to question setting and marking will remain consistent. At the same time OCR reviews all its qualifications annually and may make small adjustments to improve the performance of its assessments. We will let you know of any substantive changes.

Question 1 (i)

1 (i) Express $2 x^{2}-12 x+23$ in the form $a(x+b)^{2}+c$.

Exemplar 1

1(i) | $2\left(x^{2}-6 x\right)+23$ |
| :--- |
| $\left.2\left(x^{2}-3\right)^{2}-9\right)+23$ |
| $2(x-3)^{2}-18+23$ |
| $2(x-3)^{2}+5$ |

Exemplar 2

li) $\quad 2 x^{2}-12 x+23$
$=2\left[x^{2}-6 x+11 \cdot 5\right]$
$=2\left[(x-3)^{2}-9+1 \cdot 5\right]$
$=2\left[(x-3)^{2}+2.5\right]$
$=7(x-3)^{2}+35$

Exemplar 3

1(i)

Examiner commentary

Most candidates were able to answer this part well (exemplars 1 and 2). The best solutions gave sufficient detail so that the candidates were unlikely to make errors in moving from one line of working to the next. Those low scoring candidates who lost marks generally did so because they tried to perform two or more stages of working simultaneously (exemplar 3, where the initial error of giving b as -6 was corrected in the first line of working but this was not correctly followed through to the second line).

Question 1 (ii)

1 (ii) Use your result to show that the equation $2 x^{2}-12 x+23=0$ has no real roots.

Exemplar 1

Exemplar 2

Exemplar 3

Exemplar 4

Examiner commentary

Two forms of answer were acceptable here, both required the use of part (i) as specified in the question. Some (exemplar 1) referred to the turning point and the fact that the curve is a positive quadratic whilst others (exemplar 2) rearranged the equation to show that there are no real roots. Many others (exemplar 3), whilst using correct mathematics, did not answer the question in the way stated (considering the discriminant of the quadratic rather than using the result from (i)) and thus do not gain credit. Many lower ability candidates attempted to use the turning point method but gave only a partial answer failing to state that the curve is a positive quadratic (exemplar 4).

Question 1 (iii)

1 (iii) Given that the equation $2 x^{2}-12 x+k=0$ has repeated roots, find the value of the constant k.
Exemplar 1

1(ii)	$2 x^{2}-12 x+k=0$	$b^{2}-4 a c=0$
$\quad b=-12 c=k$	repeated roots	
$144-4 \times 2 \times k=0$		
$144=8 k-0$		
$146=8 k$	$k=18$	

Exemplar 2

Examiner commentary
Generally, candidates were able to correctly answer this part, generally by considering the discriminant of the quadratic (see exemplar 1). Some looked to use a correct method utilising the turning point of the original quadratic but did not complete the working (exemplar 2).

Question 2 (i)

2 The points A and B have position vectors $\left(\begin{array}{c}1 \\ -2 \\ 5\end{array}\right)$ and $\left(\begin{array}{c}-3 \\ -1 \\ 2\end{array}\right)$ respectively.
(i) Find the exact length of $A B$.

Exemplar 1

2(i) | $\|\overrightarrow{A B}\|$ | $=\sqrt{(-3-1)^{2}+(-1+2)^{2}+(2-5)^{2}}$ |
| ---: | :--- |
| | $=\sqrt{16+1+9}=\sqrt{26}$ |

Exemplar 2

2(i)

Examiner commentary

All candidates generally answered this well, often with clear details of how the answer was obtained (exemplar 1). Those who lost marks generally did so due to a minor error in dealing with negative values (exemplar 2).

Question 2 (ii)

2 (ii) Find the position vector of the midpoint of $A B$.
[1]

Exemplar 1

1 mark

Exemplar 2

Examiner commentary

Most, of all abilities, were able to answer this correctly, recognising the similarity to finding the midpoint in coordinate geometry, as in exemplar 1. Some confused position vectors with direction vectors and looked to find just half of the vector $A B$ (exemplar 2).

2 The points P and Q have position vectors $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ respectively.
(iii) Show that $A B P Q$ is a parallelogram.

Exemplar 1

Exemplar 2

Exemplar 4

Examiner commentary

Only a minority of candidates answered this question in the most efficient way, using the vector forms of one pair of sides. Many found the vector forms of both pairs of sides. Some then correctly stated that this then showed that opposite sides are equal and parallel (exemplar 1) others merely stated that this demonstrated that the opposite sides were parallel (exemplar 2), both of these are acceptable for full marks. Some confused vectors with coordinate geometry and tried to find a "gradient" for the vectors and then state that these were the same (exemplar 4). Partial marks were gained by some (exemplar 3) who correctly found appropriate vectors but then did not give sufficient detail in explaining why this showed that $A B P Q$ is a parallelogram (in this case incorrectly stating that vector AB equals vector PQ , rather than QP).

Question 3 (i)

3 Ayesha, Bob, Chloe and Dave are discussing the relationship between the time, t hours, they might spend revising for an examination, and the mark, m, they would expect to gain. Each of them draws a graph to model this relationship for himself or herself.

(i) Assuming Ayesha's model is correct, how long would you recommend that she spends revising?

Exemplar 1

| 3 (i) | 7 hours |
| :--- | :--- | :--- |
| | |
| | |

Examiner commentary

Almost all candidates answered this correctly (exemplar 1).

Question 3 (ii)

Exemplar 1

| 3(ii)If he didnt revise ho would gel of makes is
 unrealioher. |
| :--- | :--- |

Exemplar 2

Examiner commentary

Candidates of all abilities were generally able to gain this mark (exemplar 1). However, some of the middle ability candidates tried to read more into the question than was intended and they thus misinterpreted the given diagram (exemplar 2).

Question 3 (iii)

3 (iii) Suggest a reason for the shape of Bob's graph as compared with Ayesha's graph.

Exemplar 1

Exemplar 2

Examiner commentary

This was generally correctly answered by all candidates with the most common answers relating to tiredness (exemplar 1) or stress (exemplar 2).

Question 3 (iv)

3 (iv) What does Chloe's model suggest about her attitude to revision?

Exemplar 1

> 3(iv) Chloe believes that no matter how much revision she puts in, her grade mil stain the same

Exemplar 2

Examiner commentary

Most candidates gave a good answer (exemplar 1) although some seemed not to give any thought to the given model (exemplar 2).

Question 4

4 Prove that $\sin ^{2}(\theta+45)^{\circ}-\cos ^{2}(\theta+45)^{\circ} \equiv \sin 2 \theta^{\circ}$.
Exemplar 1

Exemplar 2
2 marks
(4)

Exemplar 4

0 marks

Examiner commentary

A large variety of correct methods were seen (1). Some started with correct use of appropriate formula but having obtained a correct partial solution then jumped to the given answer with insufficient justification for a proof (exemplar 2). Some tried to move too quickly through the stages of the proof, either after initially correct work (exemplar 3) or initially starting with misquoted formulae, (exemplar 4).

Question 5 (i)

5 Charlie claims to have proved the following statement.
"The sum of a square number and a prime number cannot be a square number."
(i) Give an example to show that Charlie's statement is not true.

Exemplar 1

5(i)

Exemplar 2

Examiner commentary

All ability groups were able to give good answers to this question (exemplars 1 and 2).

Question 5 (ii)

5 Charlie's attempt at a proof is below.
Assume that the statement is not true.
\Rightarrow There exist integers n and m and a prime p such that $n^{2}+p=m^{2}$.
$\Rightarrow p=m^{2}-n^{2}$
$\Rightarrow p=(m-n)(m+n)$
$\Rightarrow p$ is the product of two integers.
$\Rightarrow p$ is not prime, which is a contradiction.
\Rightarrow Charlie's statement is true.
(ii) Explain the error that Charlie has made.

Exemplar 1

Exemplar 2

Examiner commentary

This was often answered equally well by all ability levels (exemplars 1 and 2).

Question 5 (iii)
5 (iii) Given that 853 is a prime number, find the square number S such that $S+853$ is also a square number.
Exemplar 1

Exemplar 2

Exemplar 3

Examiner commentary

Some candidates recognised that the starting point was $m-n=1$. Most of these proceeded to obtain the correct answer (exemplar 1). Many candidates, however, did not appreciate the link with part (ii) and attempted trial and improvement (exemplar 2, correct working despite initial sign error), although generally without success (exemplar 3).

Question 6 (i)

6 In this question you must show detailed reasoning.
A curve has equation $y=\frac{\ln x}{x}$.
(i) Find the x-coordinate of the point where the curve crosses the x axis.

Exemplar 1

6(i) | $y=0$ |
| :--- |
| $\frac{\operatorname{tin} x}{x}=0$ |
| $\ln x=0 \quad \therefore \quad x=1$ |

Exemplar 2

2 marks

Examiner commentary

This question was well answered by all candidates (exemplars 1 and 2).

Question 6 (ii)
(ii) The points A and B lie on the curve and have x coordinates 2 and 4. Show that the line $A B$ is parallel to the x-axis.

Exemplar 1

Exemplar 2

Exemplar 3

$$
\text { 6(i) } \begin{aligned}
& x=2 \frac{\ln 2}{2}=0.347 \\
& \frac{\ln 4}{4}=0.347 \\
&(2,0.35) \quad(4,0.35)
\end{aligned}
$$

this means they have a gradient of agroavern of this is the line $y=0.35 \quad y=0$ is paaravel to $y=0.35$ aster ethene

Examiner commentary

To gain any marks there had to be at least one line of valid working showing why $\frac{1}{4} \ln 4$ and $\frac{1}{2} \ln 2$ are equal (exemplar 1). Many candidates just stated or implied that $\frac{\ln 2}{2}-\frac{\ln 4}{4}=0$, either without justification or by using their calculator and decimals (exemplars 2 and 3). These candidates scored no marks, because of the "detailed reasoning" instruction.

Question 6 (iii)
6 (iii) Find the coordinates of the turning point on the curve.
Exemplar 1

Exemplar 2

Examiner commentary
This question was well answered (exemplar 1). A few candidates did not find the y-coordinate (exemplar 2).

Question 6 (iv)

6 (iv) Determine whether this turning point is a maximum or a minimum.
Exemplar 1

Exemplar 2

$\frac{d^{2} y}{d x^{2}}=\frac{2 \ln x-3}{x^{3}} \quad x=e^{\prime}$
$\frac{2 \ln e^{1}-3}{-e^{13}}=-0.37$
\max point.

Exemplar 3

Examiner commentary

Most candidates attempted a correct method (exemplar 1). Some made numerical errors when substituting $x=e$ into $d 2 y$ (exemplar 2). Others made mistakes in the differentiation (exemplar 3).

Question 7

7 The diagram shows a part $A B C$ of the curve $y=3-2 x^{2}$, together with its reflections in the lines $y=x$, $y=-x$ and $y=0$.

Find the area of the shaded region.
Exemplar 1

2 points of viterection shout a be equidistay from both wed \therefore area of central square $=4$ area under $y=(3-1)-2 x^{2}=2 \int_{0}^{1} 2-2 x^{2} x^{4 x}$

$$
=2\left[2 x-\frac{2}{3} x^{3}\right]_{0}=\frac{8}{3}
$$

\therefore total area $=4+4\left(\frac{8}{3}\right)=\frac{44}{3}$
Exemplar 2

$$
\begin{aligned}
& { }^{7} \quad y=3-2 x^{2} \quad y=-x \quad y=x \\
& 3-2 x^{2}-x \\
& 2 x^{2}-x-3=0 \begin{array}{c}
x-6+1 \\
2-3
\end{array} \\
& 2 x^{2}+2 x-3 x-3=0 \quad 3-2 x^{2}=x \quad x+6-23 \\
& 2 x(x+1)-3(x+1)=0 \quad 2 x^{2}+x-3=0 \\
& (2 x-3)(0 x+1)=0 \quad 2 x^{2}-2 x+3 x-3=0 \\
& x=-1 \text { MD Ar } \quad 2 x(x-1)+3(x-1)=0 \text {. } \\
& \left.\int_{-1}^{1} 3-2 x^{2} d x-2 \int_{0}^{1} x d x+3\right)(x-1)=0 \\
& \left.\left[3 x-\frac{2}{3} x^{3}\right]_{-1}^{1}-2\left[\frac{1}{2} x^{2}\right]_{0}^{1}\right]_{4}^{1} \\
& \left.\left(+\frac{7}{3}\right)-\left(-\frac{7}{3}\right) \quad\left(\frac{1}{2}\right)-10\right) \\
& \frac{14}{3}-2\left(\frac{1}{2}\right)=\frac{11}{3} \times 4=\frac{44}{3}+4=\frac{56}{3} \\
& =\frac{56}{3} \text { square units }
\end{aligned}
$$

Exemplar 3

Examiner commentary

A large variety of correct methods were seen. Some were unnecessarily long (Exemplar 1).

A common misconception was to treat the full diagram as a single function and integrate $y=3-2 x^{2}$ using incorrect limits (exemplar 3). Many made mistakes in trying either to add or subtract all or part of the area of the middle square (exemplar 2).

Question 8 (i)(a)

8 (i) The variable X has the distribution $\mathrm{N}(20,9)$.

$$
\text { (a) Find } \mathrm{P}(X>25)
$$

Exemplar 1

s(1)(3)	$P(x>25) \quad x \sim N(20,9) \quad \sigma=3$
	$P=0.04779035$
	$=0.0478$

Exemplar 2

0 marks

Examiner commentary

Most candidates answered this question correctly, generally just stating the answer directly from their calculator (exemplar 1).
A few used a standard deviation of 9 (exemplar 2).

Question 8 (i)(b)

8
(i) (b) Given that $\mathrm{P}(X>a)=0.2$, find a.

Exemplar 1

Exemplar 2

0 marks

Exemplar 3

0 marks
$8(\mathbf{i})(\mathrm{b}) \quad a=27.575$

Examiner commentary

Many gave correct solutions (exemplar 1). Some candidates found $\Phi^{-1}(0.2)=17.5$ rather than $\Phi^{-1}(0.8)=22.5$ (exemplar 2). A few used a standard deviation of 9 (exemplar 3).

Question 8 (i)(c)

8 (i) (c) Find b such that $\mathrm{P}(20-b<x<20+b)=0.5$.
Exemplar 1

$8(i)(c)$
:---

Exemplar 2

8(i)(c) | $P(20-4 b<x<20+b)$ | $=05$ |
| ---: | :--- |
| Wen $b=1 \quad P$ | $=0.26$ |
| $b=3 \quad P$ | $=0.88$ |
| $B b=2 \quad P$ | $=0.495$ |
| P | $=0.5$ to 3 sig fig |
| $\therefore b$ | $=2$ |
| \therefore | |

Exemplar 3

Exemplar 4

Examiner commentary

Many candidates were able to give a correct solution (exemplar 1) but many could not make the first step, which is to move from the given probability of 0.5 to a probability of either 0.25 or 0.75 and thus used a trial and improvement method but often not continuing to sufficient accuracy to confirm their result (exemplar 2). A few used a standard deviation of 9 (exemplars 3 and 4).

Question 8 (ii)
8 (ii) The variable Y has the distribution $\mathrm{N}\left(\mu, \frac{\mu^{2}}{9}\right)$. Find $\mathrm{P}(Y>1.5 \mu)$.
Exemplar 1

$8_{\text {(ii) }}\left(\frac{1.5 \mu-\mu}{\left(\frac{\mu}{3}\right)}\right)=1-P(Y T(1.5 \mu)$
$\left(\frac{3 \times 0.5 \mu}{\mu}\right)-\phi(1.5)=0.93319$
$1-0.93319=0.0668$
$P(Y>1.5 \mu)=0.0668$

Exemplar 2
8(ii) \quad mean $=\mu$
$\sigma=\frac{\mu}{3}$
$\gamma \sim\left(\mu, \frac{\mu^{2}}{q}\right)$
Let $\mu=1$

$$
p(y>1.5)=0.06 .68\left(35 . f_{i}\right)
$$

AI

Exemplar 3

Exemplar 4

8(ii)

Examiner commentary

The best candidates were able to correctly substitute $X=1.5 \mu$ into $\frac{X-\mu}{\frac{\mu}{3}}$ in order to find $P(X=1.5 \mu)$. (exemplar 1) but many others chose a value for μ (often 1 or 3), without justification. These could score two out of the three marks. (exemplars 2 and 3). Some could not handle the algebraic manipulation involved in substituting $X=1.5 \mu$ into $\frac{X-\mu}{\frac{\mu}{3}}$ (exemplar 4).

Question 9
9 Briony suspects that a particular 6 -sided dice is biased in favour of 2 . She plans to throw the dice 35 times and note the number of times that it shows a 2 . She will then carry out a test at the 4% significance level. Find the rejection region for the test.

Exemplar 1

Exemplar 2

Exemplar 3

Examiner commentary

The best answers included a definition of p in the hypotheses and used an exact method, using the binomial distribution. This involved finding $P(X \geq 10)$ and $P(X \geq 11)$ or a similar method (exemplar 1). Some of the most able candidates did not include the hypotheses (exemplar 2). Some of the candidates did not define p in the hypotheses and sought to define a rejection region without giving relevant probabilities to justify their conclusions (exemplar 3). Clear definitions are required to support the statistical process and conclusions.

Question 10 (i)

10 A certain forest contains only trees of a particular species. Dipak wished to take a random sample of 5 trees from the forest. He numbered the trees from 1 to 784 . Then, using his calculator, he generated the random digits 14781049 . Using these digits, Dipak formed 5 three-digit numbers. He took the first, second and third digits, followed by the second, third and fourth digits and so on. In this way he obtained the following list of numbers for his sample.

$$
\begin{array}{lllll}
147 & 478 & 781 & 104 & 49
\end{array}
$$

(i) Explain why Dipak omitted the number 810 from his list.

Exemplar 1

Examiner commentary

This question was very well answered by most candidates (exemplar 1).

Question 10 (ii)

10 (ii) Explain why Dipak's sample is not random.
Exemplar 1

Exemplar 2

10(ii)
Benue Because, when he formed the 3 digit Aa s
numbers, if was ut fandom.

Exemplar 3

10(ii)The oily the trees which 3 digits have a higher chance of Being picked since Dipak can only pick one two digit tree per draw.

Examiner commentary
Only a limited number of candidates were correctly able to identify why this sample was not random (exemplar 1). Many merely restated the information given with no explanation (exemplar 2). Others gave answers which suggested a misunderstanding of the given information (exemplar 3).

Question 10 (iii)

10 (iii) Carry out the test at the 2% significance level.
Exemplar 1

there is not sufficient. of evidence to sung yest the mean height of his forest's wees is less -than 4.2
accept H_{0} reject $H_{1} \quad \overline{M 1} \quad A_{1}$

\therefore accept H_{0}, there is enough evidence to suggest that the mean height of the tree is 4.2 m .

Exemplar 3

Exemplar 4

Examiner commentary

This question was well answered by many candidates (exemplar 1). Some draw the incorrect conclusion that there is sufficient evidence that the mean height of the trees is 4.2 m rather than there is insufficient evidence that the mean height is less than 4.2 m (exemplar 2). Others fail to give any conclusion in context (exemplar 3). A number did not give sufficient detail to be able to gain marks, not defining μ nor the variance or the relevant probability (exemplar 4).

Question 11 (i)(a)

11 Christa used Pearson's product-moment correlation coefficient, r, to compare the use of public transport with the use of private vehicles for travel to work in the UK.
(i) Using the pre-release data set for all 348 UK Local Authorities, she considered the following four variables.

Number of employees using public transport	x
Number of employees using private vehicles	y
Proportion of employees using public transport	a
Proportion of employees using private vehicles	b

(a) Explain, in context, why you would expect strong, positive correlation between x and y.

Exemplar 1

Examiner commentary

[^0]
Question 11 (i)(b)

11
(b) Explain, in context, what kind of correlation you would expect between a and b.

Exemplar 1

Exemplar 2

Examiner commentary

Many candidates understood the point (exemplar 1), although some seemed to be unfamiliar with term correlation, referring instead to proportionality (exemplar 2).

Question 11 (ii)(a)

11 (ii) Christa also considered the data for the 33 London boroughs alone and she generated the following scatter diagram.

One London Borough is represented by an outlier in the diagram.
(a) Suggest what effect this outlier is likely to have on the value of r for the 32 London Boroughs.

Exemplar 1

Exemplar 2

Examiner commentary

Some candidates ensured that there was no ambiguity by saying that r would "move closer to 0 " in addition to stating the value of r increases (exemplar 1). Some candidates stated that r would decrease, which is incorrect. It is possible that what they meant was that the size of r would decrease, which is correct, but these candidates could not be credited the mark (exemplar 2).

Question 11 (ii)(b)

11 (b) Suggest what effect this outlier is likely to have on the value of r for the whole country.

Exemplar 1

1 mark

Examiner commentary

Many good answers were seen (exemplar 1).

Question 11 (ii)(c)

11 (c) What can you deduce about the area of the London Borough represented by the outlier? Explain your answer.

Exemplar 1

$11(i)($ () $)$ there is good units to public transport
within that areas and move
people we this transport then
those who drive

Exemplar 2

$11\left(\mathrm{ii)}(\mathrm{c}) \quad \begin{array}{c}\text { maybe people cannot afford private velides } \\ \hline \\ \text { there. } \\ \hline\end{array}\right.$

Exemplar 3

Examiner commentary

Most candidates recognised the key factor - that a tiny proportion drive to work. But some candidates mistakenly suggested that this is because there is a great deal of public transport available (exemplar 1). To gain the mark answers had to fall into one of two types:

1. A sensible suggestion for a possible reason why in this particular area few people drive. (exemplar 2)
2. A statement that it is likely that a large proportion walk or cycle to work, or that jobs are generally close to home (exemplar 3).

Question 12 (i)

12 The discrete random variable X takes values 1, 2, 3, 4 and 5, and its probability distribution is defined as follows.

$$
\mathrm{P}(X=x)= \begin{cases}a & x=1 \\ \frac{1}{2} \mathrm{P}(X=x-1) & x=2,3,4,5 \\ 0 & \text { otherwise }\end{cases}
$$

where a is a constant.
(i) Show that $a=\frac{16}{31}$.

Exemplar 1

Exemplar 2

Examiner commentary

This question was well answered by many (exemplar 1), although a few candidates used the probabilities in the table, just finding $1-\left(\frac{8}{31}+\frac{4}{31}+\frac{2}{31}+\frac{1}{31}\right)$ (exemplar 2).

Question 12 (ii)

12
The discrete probability distribution for X is given in the table.

x	1	2	3	4	5
$\mathrm{P}(X=x)$	$\frac{16}{31}$	$\frac{8}{31}$	$\frac{4}{31}$	$\frac{2}{31}$	$\frac{1}{31}$

(ii) Find the probability that X is odd.
[1]

Exemplar 1

Examiner commentary

This question was well answered (exemplar 1).

Question 12 (iii)

Two independent values of X are chosen, and their $\operatorname{sum} S$ is found.
(iii) Find the probability that S is odd.

[2]

2 marks

Exemplar 1

Exemplar 2

Examiner commentary

Some candidates recognised that their answer to part (ii) could be used (exemplar 1). Others started from scratch but often omitted to consider all possibilities (exemplar 2).

Question 12 (iv)

12
(iv) Find the probability that S is greater than 8 , given that S is odd.

Exemplar 1

Exemplar 2

12(iv)	greater than $8=4+5$
$\frac{\left(2 \times \frac{1}{31}\right.}{} \frac{226}{961}=1$	
113.	

Examiner commentary

Most candidates recognised the need to find $P(S=9)$ with the most able producing excellent solutions (exemplar 1). Some omitted to include both 4, 5 and 5, 4 but then correctly divided by their answer to part (iii) (exemplar 2 where their answer to (iii) had been 226/961).

Question 12 (v)

12 Sheila sometimes needs several attempts to start her car in the morning. She models the number of attempts she needs by the discrete random variable Y defined as follows.

$$
\mathrm{P}(Y=y+1)=\frac{1}{2} \mathrm{P}(Y=y) \quad \text { for all positive integers } y
$$

(v) Find $\mathrm{P}(Y=1)$.

Exemplar 1

Exemplar 2

Examiner commentary

Some candidates recognised the need for an infinite series and were able to sum to infinity (exemplar 1), but many could not cope with the fact that the first term is unknown and gave no response to this part. Some candidates demonstrated poor understanding of probability notation and hence resulted in concluding that $P(Y=1)=0$ (exemplar 2).

Question 12 (vi)

12 (vi) Give a reason why one of the variables, X or Y, might be more appropriate as a model for the number of attempts that Sheila needs to start her car.

Exemplar 1

Exemplar 2

Examiner commentary

A choice of either X or Y with a reasonable justification was acceptable (exemplars 1 and 2). Many offered no response to this part.

Question 13 (i)

13 In this question you must show detailed reasoning.

The probability that Paul's train to work is late on any day is 0.15 , independently of other days.
(i) The number of days on which Paul's train to work is late during a 450-day period is denoted by the random variable Y. Find a value of a such that $\mathrm{P}(Y>a) \approx \frac{1}{6}$.

Exemplar 1

3 marks

Exemplar 2

Examiner commentary

Because this question required "detailed reasoning", correct answers with insufficient detail did not necessarily score full marks (exemplar 2). Trial and improvement methods only scored full marks if they were very clearly explained, with the distribution fully described and with at least two values close to 75 being tried, with the relevant probabilities actually seen (exemplar 1).

Question 13 (ii)
13 In the expansion of $(0.15+0.85)^{50}$, the terms involving 0.15^{r} and 0.15^{r+1} are denoted by T_{r} and T_{r+1} respectively.
(ii) Show that $\frac{T_{r}}{T_{r+1}}=\frac{17(r+1)}{3(50-r)}$.

Exemplar 1

Exemplar 2

Exemplar 3
13(ii)

$$
\begin{aligned}
& (T+0.85)^{50}=\left(0.85^{50}\right)\left(C_{0}^{50}\right)(T)^{0}+{ }^{50} C_{1}(T)^{1}(0.85)^{49} \\
& +{ }^{50} \mathrm{C}_{2}(T)^{2}(0.85)^{48}+\ldots \\
& =0.85^{50}+50(0.85)^{49} T+1021225(0.85)^{48} T^{2}+ \\
& (0.15+0.85)^{50}=1 \\
& 1=0.85^{50}+50(0.85)^{44} T+1225(0.85)^{48} T^{2}+\ldots .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{50!\times 0.85}{\left(50-r!r^{!}\right.} 0 \frac{\left(50-r_{+1}\right)!r_{1}!}{50}=\frac{0.85(50!) r_{+1}!\left(50-r_{+1}\right)!}{50 r!(50-r)!} \\
& =\frac{0.85\left(500^{\prime}\right) r}{50 .(50-r)}
\end{aligned}
$$

Exemplar 4

Examiner commentary

The best candidates were able to state correct expressions for both T_{r} and T_{r+1} and were then able to show clearly how the given fraction cancels to the stated result (exemplar 1). Some candidates appeared not to understand the definition of T_{r} and T_{r+1} (exemplar 3). Others correctly stated T_{r} and T_{r+1} but were unable to cancel the fraction correctly (exemplar 2). Many, however, did not make any reference to T_{r} and T_{r+1} (exemplar 4) and a good number gave no response.

Question 13 (iii)(a)
13 (iii) The number of days on which Paul's train to work is late during a 50-day period is modelled by the random variable X.
(a) Find the values of r for which $\mathrm{P}(X=r) \leqslant \mathrm{P}(X=r+1)$.

Exemplar 1

Exemplar 2

Exemplar 3

i3(iii)(a) | $X \sim B(50,0.15)$ | |
| :--- | :--- |
| | $E(x)=50 \times 0.15=7.5$ |
| $P(x=7)=0.1575 \quad P(x=8)=0.1493$ | |
| $P(x=6)=0.1419$ | |
| | $r \leqslant 6$ |

Exemplar 4

Examiner commentary

Some candidates carried out a correct method but stopped after obtaining $r \leq 6.65$ (exemplar 2). Others did not recognise how part (ii) could be used but were able to give a completely correct solution (exemplar 1). A trial and improvement method could score a maximum of 2 marks in this question (exemplar 3). Many gave no response or gave an answer with no detail, despite the question stating that detailed reasoning must be shown (exemplar 4). These score no marks.

Question 13 (iii)(b)

13 (iii) (b) Hence find the most likely number of days on which the train will be late during a 50-day period.
[2]

Exemplar 1

13(iii)(b) | $p(x=7)=0.1575 \quad p(x=6)=0.1419: \quad p(x=8)=0.1493$ |
| :--- |
| Most Wherry value. of $x=7$ |

Exemplar 2

Exemplar 3

Examiner commentary

Almost no candidates gave a correct solution based on their answer to part (iii)(a). Some used trial and improvement, considering sufficient values of X. (At least $X=6$ and 7 were required) (exemplar 1). Some rounded their figure of 6.65 from part (iii)(a) to 7 . This did not score any marks (exemplar 2). Most gave no response to this part or gave a value without any working shown (exemplar 3).

We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.
Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print

OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by OCR. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

This resource may be freely copied and distributed, as long as the OCR logo and this small print remain intact and OCR is acknowledged as the originator of this work.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at: resources.feedback@ocr.org.uk.

OCR acknowledges the use of the following content:
Square down and Square up: alexwhite/Shutterstock.com
Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Looking for a resource?

There is now a quick and easy search tool to help find free resources for your qualification:
www.ocr.org.uk/i-want-to/find-resources/

www.ocr.org.uk

OCR Customer Contact Centre

General qualifications

Telephone 01223553998
Facsimile 01223552627
Email general.qualifications@ocr.org.uk
OCR is part of Cambridge Assessment, a department of the University of Cambridge. For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.
© OCR 2018 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. Registered company number 3484466 . OCR is an exempt charity.

[^0]: Most candidates answered correctly (exemplar 1).

