3E Gradients of a Hyperbola

1. Find the equation of the tangent to the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ at the point $(6,2 \sqrt{3})$
2. Prove that the equation of a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \cosh t, b \sinh t)$ is $\boldsymbol{a y} \boldsymbol{\operatorname { s i n h }} \boldsymbol{t}+\boldsymbol{a b}=\boldsymbol{b} \boldsymbol{x} \boldsymbol{\operatorname { c o s h }} \boldsymbol{t}$
3. Show that an equation of the normal to the hyperbola with equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(\operatorname{asec} \theta, b \tan \theta)$ is $b y+a x \sin \theta=\left(a^{2}+b^{2}\right) \tan \theta$.
4. Show that the condition for the line $y=m x+c$ to be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is that m and c satisfy $b^{2}+c^{2}=a^{2} m^{2}$.
5. The tangent to the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ at the point $(3 \cosh t, 2 \sinh t)$ crosses the y-axis at the point $(0,-1)$. Find the value of t.
6. The hyperbola H has equation $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$.

The line l_{1} is the tangent to H at the point $P(6 \cosh t, 3 \sinh t)$. The line l_{2} passes through the origin and is perpendicular to l_{1}. The lines l_{1} and l_{2} intersect at the point Q.
Show that the coordinates of the point Q are $\left(\frac{6 \cosh t}{4 \sinh ^{2} t+\cosh ^{2} t},-\frac{12 \sinh t}{4 \sinh ^{2} t+\cosh ^{2} t}\right)$.

