3D Gradients of an Ellipse

1. Find the equation of the tangent to the ellipse with equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$ at the point $(3\cos\theta, 2\sin\theta)$

2. Show that the equation of the normal to the ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ is $by\cos\theta = ax\sin\theta + (b^2 - a^2)\cos\theta\sin\theta$

Notes on tangents and normals to an ellipse

- 3. The point $P\left(2, \frac{3\sqrt{3}}{2}\right)$ lies on the ellipse *E* with parametric equations $x = 4\cos\theta$, $y = 3\sin\theta$.
- a) Find the value of θ at the point *P*.

b) Find the equation of the normal to the ellipse at point *P*.

4. Show that the condition for y = mx + c to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $a^2m^2 + b^2 = c^2$

5. The ellipse *C* has the equation $\frac{x^2}{5^2} - \frac{y^2}{3^2} = 1$. The line *l* is normal to the ellipse at the point *P* and passes through the point *Q*, where *C* cuts the *y*-axis, as shown in the diagram. Find the exact coordinates of the point *R*, where *l* cuts the positive *x*-axis.

