3D Gradients of an Ellipse

1. Find the equation of the tangent to the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ at the point $(3 \cos \theta, 2 \sin \theta)$
2. Show that the equation of the normal to the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P(a \cos \theta, b \sin \theta)$ is $b y \cos \theta=a x \sin \theta+\left(b^{2}-a^{2}\right) \cos \theta \sin \theta$
3. The point $P\left(2, \frac{3 \sqrt{3}}{2}\right)$ lies on the ellipse E with parametric equations $x=4 \cos \theta, y=3 \sin \theta$.
a) Find the value of θ at the point P.
b) Find the equation of the normal to the ellipse at point P.
4. Show that the condition for $y=m x+c$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

$$
a^{2} m^{2}+b^{2}=c^{2}
$$

5. The ellipse C has the equation $\frac{x^{2}}{5^{2}}-\frac{y^{2}}{3^{2}}=1$. The line l is normal to the ellipse at the point P and passes through the point Q, where C cuts the y-axis, as shown in the diagram. Find the exact coordinates of the point R, where l cuts the positive x-axis.

