<u>3C Eccentricity</u>

Ellipse

Parabola

Hyperbola

1. Show that for 0 < e < 1, the ellipse with focus S = (ae, 0) and directrix $x = \frac{a}{e}$ has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- 2.
- a) Find foci of the ellipse with equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and give the equation of the directrices. Hence sketch the ellipse.

b) Find foci of the ellipse with equation $\frac{x^2}{16} + \frac{y^2}{25} = 1$ and give the equation of the directrices. Hence sketch the ellipse.

3. If *P* is a point on an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, prove that PS + PS' = 2a

4. Show that for e > 1, the hyperbola with foci at $(\pm ae, 0)$ and directrices at $x = \pm \frac{a}{e}$ has equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

- 5.
- a) Sketch the hyperbola with equation $\frac{x^2}{9} \frac{y^2}{4} = 1$, indicating the foci, directrices and equations of the asymptotes.

b) Sketch the hyperbola with equation $\frac{x^2}{16} - \frac{y^2}{25} = 1$, indicating the foci, directrices and equations of the asymptotes.

A quick note on hyperbolas and ellipses:

For hyperbolas, you don't care which of a and b are bigger. For ellipses, swapping the a and b has the effect of rotating the ellipse 90° and hence the foci/directrices too. We don't get this same rotation for hyperbolas.

Formula book p19

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta, b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta)$ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	e < 1 $b^2 = a^2 (1 - e^2)$	<i>e</i> = 1	$e > 1$ $b^2 = a^2 (e^2 - 1)$	$e = \sqrt{2}$
Foci	(± <i>ae</i> , 0)	(<i>a</i> , 0)	(± <i>ae</i> , 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Note: Tangent: Normal: $ty = x + at^2$ $y + tx = 2at + at^3$ $x + t^2y = 2ct$ $t^3x - ty = c(t^4 - 1)$