3C Eccentricity

Ellipse

Parabola

Hyperbola

1. Show that for $0<e<1$, the ellipse with focus $\mathrm{S}=(a e, 0)$ and directrix $x=\frac{a}{e}$ has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
2.

a) Find foci of the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and give the equation of the directrices. Hence sketch the ellipse.
b) Find foci of the ellipse with equation $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ and give the equation of the directrices. Hence sketch the ellipse.
3. If P is a point on an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, prove that $P S+P S^{\prime}=2 a$
4. Show that for $e>1$, the hyperbola with foci at $(\pm a e, 0)$ and directrices at $x= \pm \frac{a}{e}$ has equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
5.
a) Sketch the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, indicating the foci, directrices and equations of the asymptotes.
b) Sketch the hyperbola with equation $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$, indicating the foci, directrices and equations of the asymptotes.

A quick note on hyperbolas and ellipses:
For hyperbolas, you don't care which of a and b are bigger. For ellipses, swapping the a and b has the effect of rotating the ellipse 90° and hence the foci/directrices too. We don't get this same rotation for hyperbolas.

Formula book p19

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$y^{2}=4 a x$	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$x y=c^{2}$
Parametric Form	$(a \cos \theta, b \sin \theta)$	$\left(a t^{2}, 2 a t\right)$	$\begin{gathered} (a \sec \theta, b \tan \theta) \\ (\pm a \cosh \theta, b \sinh \theta) \end{gathered}$	$\left(c t, \frac{c}{t}\right)$
Eccentricity	$\begin{gathered} e<1 \\ b^{2}=a^{2}\left(1-e^{2}\right) \end{gathered}$	$e=1$	$\begin{gathered} e>1 \\ b^{2}=a^{2}\left(e^{2}-1\right) \end{gathered}$	$e=\sqrt{2}$
Foci	$(\pm a e, 0)$	$(a, 0)$	$(\pm a e, 0)$	$(\pm \sqrt{2} c, \pm \sqrt{2} c)$
Directrices	$x= \pm \frac{a}{e}$	$x=-a$	$x= \pm \frac{a}{e}$	$x+y= \pm \sqrt{2} c$
Asymptotes	none	none	$\frac{x}{a}= \pm \frac{y}{b}$	$x=0, y=0$

Note:

$x+t^{2} y=2 c t$
$t^{3} x-t y=c\left(t^{4}-1\right)$

