

- 1. The ellipse *E* has equation  $4x^2 + 9y^2 = 36.$
- a) Sketch E.

b) Write down its parametric equations.

2. The ellipse *E* has parameter equations:

$$x = 3\cos\theta \, y = 5\sin\theta$$

Determine its Cartesian equation.

# **3B Hyperbolas**

- 1. The hyperbola *H* has equation  $4x^2 9y^2 = 36$ .
- a) Sketch H.

b) Write down the equations of the asymptotes of *H*.

c) Find parametric Equations for *H*.

2. A hyperbola H has parametric equations

$$x = 4 \sec t$$
,  $y = \tan t$ ,  $-\pi \le t < \pi$ ,  $t \ne \pm \frac{\pi}{2}$ 

a) Find a Cartesian equation for *H*.

b) Sketch H.

c) Write down the equations of the asymptotes of *H*.

# **<u>3C Eccentricity</u>**

Ellipse

Parabola

Hyperbola

1. Show that for 0 < e < 1, the ellipse with focus S = (ae, 0) and directrix  $x = \frac{a}{e}$  has equation  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .

- 2.
- a) Find foci of the ellipse with equation  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  and give the equation of the directrices. Hence sketch the ellipse.

b) Find foci of the ellipse with equation  $\frac{x^2}{16} + \frac{y^2}{25} = 1$  and give the equation of the directrices. Hence sketch the ellipse.

3. If *P* is a point on an ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , prove that PS + PS' = 2a

4. Show that for e > 1, the hyperbola with foci at  $(\pm ae, 0)$  and directrices at  $x = \pm \frac{a}{e}$  has equation  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 

- 5.
- a) Sketch the hyperbola with equation  $\frac{x^2}{9} \frac{y^2}{4} = 1$ , indicating the foci, directrices and equations of the asymptotes.

b) Sketch the hyperbola with equation  $\frac{x^2}{16} - \frac{y^2}{25} = 1$ , indicating the foci, directrices and equations of the asymptotes.

A quick note on hyperbolas and ellipses:

For hyperbolas, you don't care which of a and b are bigger. For ellipses, swapping the a and b has the effect of rotating the ellipse 90° and hence the foci/directrices too. We don't get this same rotation for hyperbolas.

### Formula book p19

#### Conics

|                 | Ellipse                                 | Parabola        | Hyperbola                                                                  | Rectangular<br>Hyperbola       |
|-----------------|-----------------------------------------|-----------------|----------------------------------------------------------------------------|--------------------------------|
| Standard Form   | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ | $y^2 = 4ax$     | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$                                    | $xy = c^2$                     |
| Parametric Form | $(a\cos\theta, b\sin\theta)$            | $(at^2, 2at)$   | $(a \sec \theta, b \tan \theta)$<br>$(\pm a \cosh \theta, b \sinh \theta)$ | $\left(ct, \frac{c}{t}\right)$ |
| Eccentricity    | e < 1<br>$b^2 = a^2 (1 - e^2)$          | <i>e</i> = 1    | e > 1<br>$b^2 = a^2 (e^2 - 1)$                                             | $e = \sqrt{2}$                 |
| Foci            | (± <i>ae</i> , 0)                       | ( <i>a</i> , 0) | (± <i>ae</i> , 0)                                                          | $(\pm\sqrt{2}c,\pm\sqrt{2}c)$  |
| Directrices     | $x = \pm \frac{a}{e}$                   | x = -a          | $x = \pm \frac{a}{e}$                                                      | $x + y = \pm \sqrt{2}c$        |
| Asymptotes      | none                                    | none            | $\frac{x}{a} = \pm \frac{y}{b}$                                            | x=0, y=0                       |

| Noto  |          |                       | /                                        |
|-------|----------|-----------------------|------------------------------------------|
| NOLE. | Tangent: | $\int ty = x + at^2$  | $x + t^2y = 2ct$                         |
|       |          |                       | $f^{3}x = tx = c(t^{4} = 1)$             |
|       | Normal:  | $y + tx = 2at + at^3$ | $r \iota x - \iota y = \iota(\iota - 1)$ |
|       | I        | /                     |                                          |

### **3D Gradients of an Ellipse**

1. Find the equation of the tangent to the ellipse with equation  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  at the point  $(3\cos\theta, 2\sin\theta)$ 

2. Show that the equation of the normal to the ellipse with equation  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  at the point  $P(a\cos\theta, b\sin\theta)$  is  $by\cos\theta = ax\sin\theta + (b^2 - a^2)\cos\theta\sin\theta$ 

Notes on tangents and normals to an ellipse

- 3. The point  $P\left(2, \frac{3\sqrt{3}}{2}\right)$  lies on the ellipse *E* with parametric equations  $x = 4\cos\theta$ ,  $y = 3\sin\theta$ .
- a) Find the value of  $\theta$  at the point *P*.

b) Find the equation of the normal to the ellipse at point *P*.

4. Show that the condition for y = mx + c to be a tangent to the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  is  $a^2m^2 + b^2 = c^2$ 

5. The ellipse *C* has the equation  $\frac{x^2}{5^2} - \frac{y^2}{3^2} = 1$ . The line *l* is normal to the ellipse at the point *P* and passes through the point *Q*, where *C* cuts the *y*-axis, as shown in the diagram. Find the exact coordinates of the point *R*, where *l* cuts the positive *x*-axis.



# **<u>3E Gradients of a Hyperbola</u>**

1. Find the equation of the tangent to the hyperbola with equation  $\frac{x^2}{9} - \frac{y^2}{4} = 1$  at the point  $(6, 2\sqrt{3})$ 

2. Prove that the equation of a tangent to the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  at the point  $(a \cosh t, b \sinh t)$  is  $ay \sinh t + ab = bx \cosh t$ 

3. Show that an equation of the normal to the hyperbola with equation  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  at  $(\operatorname{asec} \theta, b \tan \theta)$  is  $by + ax \sin \theta = (a^2 + b^2) \tan \theta$ .

4. Show that the condition for the line y = mx + c to be a tangent to the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  is that m and c satisfy  $b^2 + c^2 = a^2m^2$ .

5. The tangent to the hyperbola with equation  $\frac{x^2}{9} - \frac{y^2}{4} = 1$  at the point  $(3 \cosh t, 2 \sinh t)$  crosses the *y*-axis at the point (0, -1). Find the value of *t*.

6. The hyperbola *H* has equation  $\frac{x^2}{36} - \frac{y^2}{9} = 1$ . The line  $l_1$  is the tangent to *H* at the point *P*(6 cosh *t*, 3 sinh *t*). The line  $l_2$  passes through the origin and is perpendicular to  $l_1$ . The lines  $l_1$  and  $l_2$  intersect at the point *Q*. Show that the coordinates of the point *Q* are  $\left(\frac{6 \cosh t}{4 \sinh^2 t + \cosh^2 t}, -\frac{12 \sinh t}{4 \sinh^2 t + \cosh^2 t}\right)$ .

### 3F More Loci

1. The tangent to the ellipse with equation  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  at the point  $P(a \cos t, b \sin t)$  crosses the *x*-axis at *A* and the *y*-axis at *B*. Find an equation for the locus of the mid-point of *AB* as *P* moves around the ellipse.

- 2. The normal at  $P(ap^2, 2ap)$  and the normal at  $Q(aq^2, 2aq)$  to the parabola with equation  $y^2 = 4ax$  meet at *R*.
- a) Find the coordinates of *R*.

The chord PQ passes through the focus (a, 0) of the parabola.

b) Show that pq = -1

c) Show that the locus of *R* is a parabola with equation  $y^2 = a(x - 3a)$