3A Ellipses

circle

ellipse

1. The ellipse E has equation

$$
4 x^{2}+9 y^{2}=36
$$

a) Sketch E.
b) Write down its parametric equations.
2. The ellipse E has parameter equations:

$$
x=3 \cos \theta y=5 \sin \theta
$$

Determine its Cartesian equation.

3B Hyperbolas

1. The hyperbola H has equation $4 x^{2}-9 y^{2}=36$
a) Sketch H.
b) Write down the equations of the asymptotes of H.
c) Find parametric Equations for H.
2. A hyperbola H has parametric equations

$$
x=4 \sec t, \quad y=\tan t, \quad-\pi \leq t<\pi, \quad t \neq \pm \frac{\pi}{2}
$$

a) Find a Cartesian equation for H.
b) Sketch H.
c) Write down the equations of the asymptotes of H.

3C Eccentricity

Ellipse

Parabola

Hyperbola

1. Show that for $0<e<1$, the ellipse with focus $\mathrm{S}=(a e, 0)$ and directrix $x=\frac{a}{e}$ has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
2.

a) Find foci of the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and give the equation of the directrices. Hence sketch the ellipse.
b) Find foci of the ellipse with equation $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ and give the equation of the directrices. Hence sketch the ellipse.
3. If P is a point on an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, prove that $P S+P S^{\prime}=2 a$
4. Show that for $e>1$, the hyperbola with foci at $(\pm a e, 0)$ and directrices at $x= \pm \frac{a}{e}$ has equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
5.
a) Sketch the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, indicating the foci, directrices and equations of the asymptotes.
b) Sketch the hyperbola with equation $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$, indicating the foci, directrices and equations of the asymptotes.

A quick note on hyperbolas and ellipses:
For hyperbolas, you don't care which of a and b are bigger. For ellipses, swapping the a and b has the effect of rotating the ellipse 90° and hence the foci/directrices too. We don't get this same rotation for hyperbolas.

Formula book p19

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	$y^{2}=4 a x$	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$x y=c^{2}$
Parametric Form	$(a \cos \theta, b \sin \theta)$	$\left(a t^{2}, 2 a t\right)$	$\begin{gathered} (a \sec \theta, b \tan \theta) \\ (\pm a \cosh \theta, b \sinh \theta) \end{gathered}$	$\left(c t, \frac{c}{t}\right)$
Eccentricity	$\begin{gathered} e<1 \\ b^{2}=a^{2}\left(1-e^{2}\right) \end{gathered}$	$e=1$	$\begin{gathered} e>1 \\ b^{2}=a^{2}\left(e^{2}-1\right) \end{gathered}$	$e=\sqrt{2}$
Foci	$(\pm a e, 0)$	$(a, 0)$	$(\pm a e, 0)$	$(\pm \sqrt{2} c, \pm \sqrt{2} c)$
Directrices	$x= \pm \frac{a}{e}$	$x=-a$	$x= \pm \frac{a}{e}$	$x+y= \pm \sqrt{2} c$
Asymptotes	none	none	$\frac{x}{a}= \pm \frac{y}{b}$	$x=0, y=0$

Note:

$x+t^{2} y=2 c t$
$t^{3} x-t y=c\left(t^{4}-1\right)$

3D Gradients of an Ellipse

1. Find the equation of the tangent to the ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ at the point $(3 \cos \theta, 2 \sin \theta)$
2. Show that the equation of the normal to the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P(a \cos \theta, b \sin \theta)$ is $b y \cos \theta=a x \sin \theta+\left(b^{2}-a^{2}\right) \cos \theta \sin \theta$
3. The point $P\left(2, \frac{3 \sqrt{3}}{2}\right)$ lies on the ellipse E with parametric equations $x=4 \cos \theta, y=3 \sin \theta$.
a) Find the value of θ at the point P.
b) Find the equation of the normal to the ellipse at point P.
4. Show that the condition for $y=m x+c$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

$$
a^{2} m^{2}+b^{2}=c^{2}
$$

5. The ellipse C has the equation $\frac{x^{2}}{5^{2}}-\frac{y^{2}}{3^{2}}=1$. The line l is normal to the ellipse at the point P and passes through the point Q, where C cuts the y-axis, as shown in the diagram. Find the exact coordinates of the point R, where l cuts the positive x-axis.

3E Gradients of a Hyperbola

1. Find the equation of the tangent to the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ at the point $(6,2 \sqrt{3})$
2. Prove that the equation of a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \cosh t, b \sinh t)$ is $\boldsymbol{a y} \boldsymbol{\operatorname { s i n h }} \boldsymbol{t}+\boldsymbol{a b}=\boldsymbol{b} \boldsymbol{x} \boldsymbol{\operatorname { c o s h }} \boldsymbol{t}$
3. Show that an equation of the normal to the hyperbola with equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(\operatorname{asec} \theta, b \tan \theta)$ is $b y+a x \sin \theta=\left(a^{2}+b^{2}\right) \tan \theta$.
4. Show that the condition for the line $y=m x+c$ to be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is that m and c satisfy $b^{2}+c^{2}=a^{2} m^{2}$.
5. The tangent to the hyperbola with equation $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ at the point $(3 \cosh t, 2 \sinh t)$ crosses the y-axis at the point $(0,-1)$. Find the value of t.
6. The hyperbola H has equation $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$.

The line l_{1} is the tangent to H at the point $P(6 \cosh t, 3 \sinh t)$. The line l_{2} passes through the origin and is perpendicular to l_{1}. The lines l_{1} and l_{2} intersect at the point Q.
Show that the coordinates of the point Q are $\left(\frac{6 \cosh t}{4 \sinh ^{2} t+\cosh ^{2} t},-\frac{12 \sinh t}{4 \sinh ^{2} t+\cosh ^{2} t}\right)$.

3F More Loci

1. The tangent to the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P(a \cos t, b \sin t)$ crosses the x-axis at A and the y-axis at B.
Find an equation for the locus of the mid-point of $A B$ as P moves around the ellipse.
2. The normal at $P\left(a p^{2}, 2 a p\right)$ and the normal at $Q\left(a q^{2}, 2 a q\right)$ to the parabola with equation $y^{2}=4 a x$ meet at R.
a) Find the coordinates of R.

The chord $P Q$ passes through the focus $(a, 0)$ of the parabola.
b) Show that $p q=-1$
c) Show that the locus of R is a parabola with equation $y^{2}=a(x-3 a)$

