Paper 2 Option A

Further Pure Mathematics 1 Mark Scheme (Section A)

Question	Scheme	Marks	AOs
1(a)	$\sec x - \tan x = \frac{1}{\frac{1-t^2}{1+t^2}} - \frac{2t}{1-t^2}$	M1	2.1
	$= \frac{1+t^2}{1-t^2} - \frac{2t}{1-t^2} = \frac{1-2t+t^2}{1-t^2}$	M1	1.1b
	$=\frac{(1-t)^2}{(1-t)(1+t)} = \frac{1-t}{1+t} *$	A1*	2.1
		(3)	
(b)	$\frac{1-\sin x}{1+\sin x} = \frac{1-\frac{2t}{1+t^2}}{1+\frac{2t}{1+t^2}}$	M1	1.1a
	$= \frac{1+t^2-2t}{1+t^2+2t}$	M1	1.1b
	$= \frac{(1-t)^2}{(1+t)^2} = \left(\frac{1-t}{1+t}\right)^2 = (\sec x - \tan x)^2 *$	A1*	2.1
		(3)	

(6 marks)

Notes:

(a)

M1: Uses $\sec x = \frac{1}{\cos x}$ and the *t*-substitutions for both $\cos x$ and $\tan x$ to obtain an expression in terms of *t*

M1: Sorts out the sec x term, and puts over a common denominator of $1-t^2$

A1*: Factorises both numerator and denominator (must be seen) and cancels the (1+t) term to achieve the answer

(b)

M1: Uses the t-substitution for $\sin x$ in both numerator and denominator

M1: Multiples through by $1 + t^2$ in numerator and denominator

A1*: Factorises both numerator and denominator and makes the connection with part (a) to achieve the given result

Question	Scheme	Marks	AOs
2	£300 purchased one hour after opening $\Rightarrow V_0 = 3$ and $t_0 = 1$;	B1	3.3
	half an hour after purchase $\Rightarrow t_2 = 1.5$, so step h required is 0.25		
	$t_0 = 1, \ V_0 = 3, \ \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 \approx \frac{3^2 - 1}{1^2 + 3} = 2$	M1	3.4
	$V_1 \approx V_0 + h \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_0 = 3 + 0.25 \times 2 = \dots$	M1	1.1b
	= 3.5	A1ft	1.1b
	$\left(\frac{dV}{dt}\right)_{1} \approx \frac{3.5^{2} - 1.25}{1.25^{2} + 1.25 \times 3.5} \left(=\frac{176}{95}\right)$	M1	1.1b
	$V_2 \approx V_1 + h \left(\frac{dV}{dt}\right)_1 = 3.5 + 0.25 \times \frac{176}{95} = 3.963, \text{ so £396}$	A1	3.2a
	(nearest £)		
		(6)	

(6 marks)

Notes:

B1: Identifies the correct initial conditions and requirement for h

Uses the model to evaluate $\frac{\mathrm{d}V}{\mathrm{d}t}$ at t_0 , using their t_0 and V_0 **M1:**

M1: Applies the approximation formula with their valuesA1ft: 3.5 or exact equivalent. Follow through their step value

Attempt to find $\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)$ with their 3.5 **M1:**

Applies the approximation and interprets the result to give £396 **A1:**

Question	Scheme	Marks	AOs			
3	$\frac{1}{x} < \frac{x}{x+2}$					
	$\frac{(x+2)-x^2}{x(x+2)} < 0 \text{ or } x(x+2)^2 - x^3(x+2) < 0$	M1	2.1			
	$\frac{x^2 - x - 2}{x(x+2)} > 0 \Rightarrow \frac{(x-2)(x+1)}{x(x+2)} > 0 \text{ or } x(x+2)(2-x)(x+1) < 0$					
	At least two correct critical values from $-2, -1, 0, 2$	A1	1.1b			
	All four correct critical values $-2, -1, 0, 2$	A1	1.1b			
	$\{x \in \mathbb{R} : x < -2\} \cup \{x \in \mathbb{R} : -1 < x < 0\} \cup \{x \in \mathbb{R} : x > 2\}$	M1 A1	2.2a 2.5			
		(6)				

(6 marks)

Notes:

- M1: Gathers terms on one side and puts over common denominator, or multiply by $x^2(x+2)^2$ and then gather terms on one side
- **M1:** Factorise numerator or find roots of numerator or factorise resulting in equation into 4 factors
- A1: At least 2 correct critical values found
- **A1:** Exactly 4 correct critical values
- **M1:** Deduces that the 2 "outsides" and the "middle interval" are required. May be by sketch, number line or any other means
- **A1:** Exactly 3 correct intervals, accept equivalent set notations, but must be given as a set e.g. accept $\mathbb{R} ([-2, -1] \cup [0, 2])$ or $\{x \in \mathbb{R} : x < -2 \text{ or } -1 < x < 0 \text{ or } x > 2\}$

Question	Scheme	Marks	AOs
4(a)	Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2} \mathbf{AB} \times \mathbf{AC} $	M1	3.1a
	$\frac{1}{2} \mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{C} = \frac{1}{2} (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \times (-\mathbf{i} + \mathbf{j} + 2\mathbf{k}) $	M1	1.1b
	$=\frac{1}{2} 5\mathbf{i}+3\mathbf{j}+\mathbf{k} $	M1	1.1b
	$=\frac{1}{2}\sqrt{35}(\mathrm{m}^2)$	A1	1.1b
		(4)	
	Alternative		
	Identifies glued face is triangle <i>ABC</i> and attempts to find the area, e.g. evidences by use of $\frac{1}{2}\sqrt{ \mathbf{AB} ^2 \mathbf{AC} ^2-(\mathbf{AB.AC})^2}$	M1	3.1a
	$ \mathbf{AB} ^2 = 4 + 9 + 1 = 14, \mathbf{AC} ^2 = 1 + 1 + 4 = 6$ and $\mathbf{AB.AC} = 2 + 3 + 2 = 7$	M1	1.1b
	So area of glue is = $\frac{1}{2}\sqrt{('14')('6')-('7')^2}$	M1	1.1b
	$=\frac{1}{2}\sqrt{35} \ (\text{m}^2)$	A1	1.1b
		(4)	
(b)	Volume of parallelepiped taken up by concrete is e.g. $\frac{1}{6} (\mathbf{OC}.(\mathbf{OA} \times \mathbf{OB}))$	M1	3.1a
	$= \frac{1}{6}(\mathbf{i} + \mathbf{j} + 2\mathbf{k}).(2\mathbf{i} \times (3\mathbf{j} + \mathbf{k}))$	M1	1.1b
	$=\frac{10}{6}=\frac{5}{3}$	A1	1.1b
	Volume of parallelepiped is 6 \times volume of tetrahedron (= 10), so volume of glass is difference between these, viz. $10 - \frac{5}{3} = \dots$	M1	3.1a
	Volume of glass = $\frac{25}{3}$ (m ³)	A1	1.1b
		(5)	

	Scheme	Marks	AOs
	4(b) Alternative		
	$-\mathbf{j} + 3\mathbf{k}$ is perpendicular to both $\mathbf{O}\mathbf{A} = 2\mathbf{i}$ and $\mathbf{O}\mathbf{B} = 3\mathbf{j} + \mathbf{k}$	M1	3.1a
	Area $AOB = \frac{1}{2} \times \mathbf{OA} \times \mathbf{OB} = \frac{1}{2} \times 2 \times \sqrt{10} = \sqrt{10}$	A1	1.1b
	$\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k}) \Rightarrow p = \frac{1}{2}$		
	and so height of tetrahedron is	M1	3.1a
	$h = \frac{1}{2} \left -\mathbf{j} + 3\mathbf{k} \right = \frac{1}{2} \sqrt{10}$		
	Volume of glass is $V = 5 \times \text{Volume of tetrahedron}$		
	$= 5 \times \frac{1}{3} \sqrt{10} \times \frac{1}{2} \sqrt{10}$	M1	1.1b
	$=\frac{25}{3}\left(\mathrm{m}^3\right)$	A1	1.1b
		(5)	
(c)	The glued surfaces may distort the shapes / reduce the volume of concrete		
	Measurements in m may not be accurate	B1	3.2b
	The surface of the concrete tetrahedron may not be smooth		
	Pockets of air may form when the concrete is being poured		
		(1)	

(10 marks)

Question 4 notes:

Accept use of column vectors throughout

(a)

M1: Shows an understanding of what is required via an attempt at finding the area of triangle *ABC*

M1: Any correct method for the triangle area is fine

M1: Finds AB and AC or any other appropriate pair of vectors to use in the vector product and attempts to use them

A1: Correct procedure for the vector product with at least 1 correct term $\frac{1}{2}\sqrt{35}$ or exact equivalent

(a) Alternative

M1: Finds two appropriate sides and attempts the scalar product and magnitudes of two of the sides

M1: May use different sides to those shown

M1: Correct full method to find the area of the triangle using their two sides

A1: $\frac{1}{2}\sqrt{35}$ or exact equivalent

Question 4 notes continued:

(b)

M1: Attempts volume of concrete by finding volume of tetrahedron with appropriate method

M1: Uses the formula with correct set of vectors substituted (may not be the ones shown) and vector product attempted

A1: Correct value for the volume of concrete

M1: Attempt to find total volume of glass by multiplying their volume of concrete by 6 and subtracting their volume of concrete. May restart to find the volume of parallelepiped

A1: $\frac{23}{3}$ only, ignore reference to units

(b) Alternative

M1: Notes (or works out using scalar products) that $-\mathbf{j} + 3\mathbf{k}$ is a vector perpendicular to both $\mathbf{OA} = 2\mathbf{i}$ and $\mathbf{OB} = 3\mathbf{j} + \mathbf{k}$

A1: Finds (using that **OA** and **OB** are perpendicular), area of $AOB = \sqrt{10}$

M1: Solves $\mathbf{i} + \mathbf{j} + 2\mathbf{k} - p(-\mathbf{j} + 3\mathbf{k}) = \mu(2\mathbf{i}) + \lambda(3\mathbf{j} + \mathbf{k})$ to get the height of the tetrahedron

$$\left[(\mu = \lambda =) \ p = \frac{1}{2}, \text{ so } h = \frac{1}{2} \left| -\mathbf{j} + 3\mathbf{k} \right| = \frac{1}{2} \sqrt{10} \right]$$

M1: Identifies the correct area as 5 times the volume of the tetrahedron (may be done as in main scheme via the difference)

A1: $\frac{25}{3}$ only, ignore reference to units

(c)

B1: Any acceptable reason in context

Question	Scheme	Marks	AOs
5(a)	$y^{2} = (8p)^{2} = 64p^{2}$ and $16x = 16(4p^{2}) = 64p^{2}$ $\Rightarrow P(4p^{2}, 8p)$ is a general point on C	B1	2.2a
		(1)	
(b)	$y^2 = 16x$ gives $a = 4$, or $2y \frac{dy}{dx} = 16$ so $\frac{dy}{dx} = \frac{8}{y}$	M1	2.2a
	$l: y - 8p = \left(\frac{8}{8p}\right)\left(x - 4p^2\right)$	M1	1.1b
	leading to $py = x + 4p^2 *$	A1*	2.1
		(3)	
(c)	$B\left(-4, \frac{10}{3}\right) \text{ into } l \implies \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \Rightarrow (2p - 3)(3p + 2) = 0 \Rightarrow p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and l cuts x -axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x = \dots$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \text{Area}(R) = \frac{1}{2}(99)(12) - \int_0^9 4x^{\frac{1}{2}} dx$	M1	2.1
	$\mathbf{f} = \frac{1}{4x^{\frac{3}{2}}}$ 8 $\frac{3}{2}$	M1	1.1b
	$\int 4x^{\frac{1}{2}} dx = \frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} (+c) \text{ or } \frac{8}{3}x^{\frac{3}{2}} (+c)$	A1	1.1b
	Area(R) = $\frac{1}{2}$ (18)(12) - $\frac{8}{3}$ ($9^{\frac{3}{2}}$ - 0) = 108 - 72 = 36 *	A1*	1.1b
		(8)	

Question	Scheme	Marks	AOs
	5(c) Alternative 1		
	$B\left(-4, \frac{10}{3}\right) \text{ into } l \implies \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ into l gives $\frac{3}{2}y = x + 4\left(\frac{3}{2}\right)^2 \implies x = \dots$	M1	2.1
	$x = \frac{3}{2}y - 9$	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \int_0^{12} \left(\frac{1}{16} y^2 - \left(\frac{3}{2} y - 9 \right) \right) dy$	M1	2.1
	$\int \left(\frac{1}{16}y^2 - \frac{3}{2}y + 9\right) dy = \frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y \ (+c)$	M1	1.1b
	$\int (16^{y} 2^{y+3})^{4y} = 48^{y} + 4^{y+3}y $ (16)	A1	1.1b
	Area(R) = $\left(\frac{1}{48}(12)^3 - \frac{3}{4}(12)^2 + 9(12)\right) - (0)$ = 36 - 108 + 108 = 36 *	A1*	1.1b
	- 30 - 100 + 100 - 30	(8)	
	5(c) Alternative 2	(0)	
	$B\left(-4, \frac{10}{3}\right) \text{ into } l \implies \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and l cuts px-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x =$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \text{ and } x = 0 \text{ in } l : y = \frac{2}{3}x + 6 \text{ gives } y = 6$ $\Rightarrow \text{Area}(R) = \frac{1}{2}(9)(6) + \int_{0}^{9} \left(\left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dx$	M1	2.1
	$\int \left(2 + \left(\frac{1}{2}\right), \frac{1}{2} + \left(\frac{8}{3}\right)^{\frac{3}{2}} + \cdots \right)$	M1	1.1b
	$\int \left(\frac{2}{3}x + 6 - 4x^{\frac{1}{2}}\right) dx = \frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}} (+c)$	A1	1.1b
	Area(R) = 27 + $\left(\left(\frac{1}{3} (9)^2 + 6(9) - \frac{8}{3} (9^{\frac{3}{2}}) \right) - (0) \right)$ = 27 + (27 + 54 - 72) = 27 + 9 = 36 *	A1*	1.1b
		(8)	
		(12 n	narks)

Question 5 notes:

(a)

B1: Substitutes $y_p = 8p$ into y^2 to obtain $64p^2$ and substitutes $x_p = 4p^2$ into 16x to obtain $64p^2$ and concludes that *P* lies on *C*

(b)

M1: Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it

M1: Applies $y - 8p = m(x - 4p^2)$, with their tangent gradient m, which is in terms of p. Accept use of $8p = m(4p^2) + c$ with a clear attempt to find c

A1*: Obtains $py = x + 4p^2$ by **cso**

(c)

M1: Substitutes their x = "-a" and $y = \frac{10}{3}$ into l

M1: Obtains a 3 term quadratic and solves (using the usual rules) to give p = ...

M1: Substitutes their p (which must be positive) and y = 0 into l and solves to give

 $x = \dots$

A1: Finds that *l* cuts the *x*-axis at x = -9

M1: Fully correct method for finding the area of R

i.e. $\frac{1}{2}$ (their $x_P - "-9"$)(their y_P) $-\int_0^{\text{their } x_P} 4x^{\frac{1}{2}} dx$

M1: Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where λ , $\mu \neq 0$

A1: Integrates $4x^{\frac{1}{2}}$ to give $\frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified

A1*: Fully correct proof leading to a correct answer of 36

(c) Alternative 1

M1: Substitutes their x = "-a" and $y = \frac{10}{3}$ into l

M1: Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$. Substitutes their p (which must be positive) into l and rearranges to give $x = \dots$

M1: Finds *l* as $x = \frac{3}{2}y - 9$

A1: Fully correct method for finding the area of *R*

M1: i.e. $\int_0^{\text{their } y_p} \left(\frac{1}{16} y^2 - \text{their } \left(\frac{3}{2} y - 9 \right) \right) dy$

M1: Integrates $\pm \lambda y^2 \pm \mu y \pm \nu$ to give $\pm \alpha y^3 \pm \beta y^2 \pm \nu y$, where $\lambda, \mu, \nu, \alpha, \beta \neq 0$

A1: Integrates $\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)$ to give $\frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$, simplified or un-simplified

A1*: Fully correct proof leading to a correct answer of 36

73

Question 5 notes continued:

(c) Alternative 2

M1: Substitutes their x = "-a" and $y = \frac{10}{3}$ into l

M1: Obtains a 3 term quadratic and solves (using the usual rules) to give p = ...

M1: Substitutes their p (which must be positive) and y = 0 into l and solves to give x = ...

A1: Finds that *l* cuts the *x*-axis at x = -9

M1: Fully correct method for finding the area of R

i.e.
$$\frac{1}{2}$$
 (their 9)(their 6) + $\int_0^{\text{their } x_p} \left(\text{their } \left(\frac{2}{3}x + 6 \right) - \left(4x^{\frac{1}{2}} \right) \right) dy$

M1: Integrates $\pm \lambda x \pm \mu \pm vx^{\frac{1}{2}}$ to give $\pm \alpha x^2 \pm \mu x \pm \beta x^{\frac{3}{2}}$, where $\lambda, \mu, \nu, \alpha, \beta \neq 0$

A1: Integrates $\left(\frac{2}{3}x + 6\right) - \left(4x^{\frac{1}{2}}\right)$ to give $\frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified

A1*: Fully correct proof leading to a correct answer of 36

Further Pure Mathematics 2 Mark Scheme (Section B)

Question	Scheme	Marks	AOs
6(a)	Consider $\det \begin{pmatrix} 3-\lambda & 1 \\ 6 & 4-\lambda \end{pmatrix} = (3-\lambda)(4-\lambda)-6$	M1	1.1b
	So $\lambda^2 - 7\lambda + 6 = 0$ is characteristic equation	A1	1.1b
		(2)	
	So $\mathbf{A}^2 = 7\mathbf{A} - 6\mathbf{I}$	B1ft	1.1b
(b)	Multiplies both sides of their equation by A so $\mathbf{A}^3 = 7\mathbf{A}^2 - 6\mathbf{A}$	M1	3.1a
	Uses $\mathbf{A}^3 = 7(7\mathbf{A} - 6\mathbf{I}) - 6\mathbf{A}$ So $\mathbf{A}^3 = 43\mathbf{A} - 42\mathbf{I}^*$	A1*cso	1.1b
		(3)	

(5 marks)

Notes:

(a)

M1: Complete method to find characteristic equation

A1: Obtains a correct three term quadratic equation – may use variable other than λ

(b)

B1ft: Uses Cayley Hamilton Theorem to produce equation replacing λ with **A** and constant term with constant multiple of identity matrix, **I**

M1: Multiplies equation by A

A1*: Replaces A^2 by linear expression in A and achieves printed answer with no errors

Question	Scheme	Marks	AOs				
7(i)	Adding digits $8+1+8+4=21$ which is divisible by 3 (or continues to add digits giving $2+1=3$ which is divisible by 3) so concludes that 8184 is divisible by 3	M1	1.1b				
	8184 is even, so is divisible by 2 and as divisible by both 3 and 2, so it is divisible by 6	A1	1.1b				
		(2)					
(ii)	Starts Euclidean algorithm $31=27 \times 1 + 4$ and $27 = 4 \times 6 + 3$	M1	1.2				
	$4 = 3 \times 1 + 1$ (so hef = 1)	A1	1.1b				
	So $1 = 4 - 3 \times 1 = 4 - (27 - 4 \times 6) \times 1 = 4 \times 7 - 27 \times 1$	M1	1.1b				
	$(31 - 27 \times 1) \times 7 - 27 \times 1 = 31 \times 7 - 27 \times 8$ $a = -8 \text{ and } b = 7$						
		(4)					
		(6 m	nombra)				

(6 marks)

Notes:

(i)

M1: Explains divisibility by 3 rule in context of this number by adding digits

A1: Explains divisibility by 2, giving last digit even as reason and makes conclusion that number is divisible by 6

(ii)

M1: Uses Euclidean algorithm showing two stages

A1: Completes the algorithm. Does not need to state that hcf = 1

M1: Starts reversal process, doing two stages and simplifying

A1cso: Correct completion, giving clear answer following complete solution

Question	Scheme	Marks	AOs
8(a)	$(x-9)^2 + (y+12)^2 = 4[x^2 + y^2]$	M1	2.1
	$3x^2 + 3y^2 + 18x - 24y - 225 = 0$ which is the equation of a circle	A1*	2.2a
	As $x^2 + y^2 + 6x - 8y - 75 = 0$ so $(x+3)^2 + (y-4)^2 = 10^2$	M1	1.1b
	Giving centre at (-3, 4) and radius = 10	A1ft	1.1b
		(4)	
(b)		M1	1.1b
	-3+4i	A1	1.1b
		(2)	
(c)	Values range from their $-3-10$ to their $-3+10$	M1	3.1a
	So $-13 \le \text{Re}(w) \le 7$	A1ft	1.1b
		(2)	

(8 marks)

Notes:

(a)

M1: Obtains an equation in terms of x and y using the given information

A1: Expands and simplifies the algebra, collecting terms and obtains a circle equation correctly, deducing that this is a circle

M1: Completes the square for their equation to find centre and radius

A1ft: Both correct

(b)

M1: Draws a circle with centre and radius as given from their equation

A1: Correct circle drawn, as above, with centre at -3 + 4i and passing through all four quadrants

(c)

M1: Attempts to find where a line parallel to the real axis, passing through the centre of the circle, meets the circle so using "their -3-10" to "their -3+10"

A1ft: Correctly obtains the correct answer for their centre and radius

Question					Schen	ne			Marks	AOs
9(a)(i)										
	*	0	2	3	4	5	6			
	0	0	2	3	4	5	6			
	2	2	0			4			M1	1.1b
	3	3					5	-	1411	1.10
	4	4						_		
	5	5	4					-		
	6	6		5						
		1	1	1	1		1	7		
	*	0	2	3	4	5	6	-		
	0	0	2	3	4	5	6	-		
	2	2	0	6	5	4	3	-	M1	1.1b
	3	3	6	4	2	0	5	 	A1	1.1b
	4	4	5	2	6	3	0	-		
	5	5	4	0	3	6	2	_		
(ii)	6	6	3	5	0	2	4		3.51	2.1
(11)	Identity								M1	2.1
	3 and 5 and					erses, 2	is self-in	verse,	M1	2.5
	Asso	ciative	law m	ay be a	ssumed	so S fo	rms a gro	up	A1	1.1b
									(6)	
(b)	4*4*4 =	4* (4	* 4) =	4 * 6 or	4*4*4	= (4* 4	1) * 4 = 6*	⁴ 4	M1	2.1
	= 0 (the	identit	ty) so 4	has orc	der 3				A1	2.2a
									(2)	
(c)	3 and 5	each h	ave ord	ler 6 so	either g	generate	es the grou	ıp	M1	3.1a
	Either $3^1 = 3$, $3^2 = 4$, $3^3 = 2$, $3^4 = 6$, $3^5 = 5$, $3^6 = 0$							A 1 A 1	1.1b	
	A1 A1							1.1b		
									(3)	
									(11 r	narks)

Question 9 notes:

(a)(i)

- **M1:** Begins completing the table obtaining correct first row and first column and using symmetry
- M1: Mostly correct three rows or three columns correct (so demonstrates understanding of using *
- **A1:** Completely correct

(a)(ii)

- M1: States closure and identifies the identity as zero
- **M1:** Finds inverses for each element
- **A1:** States that associative law is satisfied and so all axioms satisfied and S is a group

(b)

- M1: Clearly begins process to find 4*4*4 reaching 6*4 or 4*6 with clear explanation
- **A1:** Gives answer as zero, states identity and deduces that order is 3

(c)

- M1: Finds either 3 or 5 or both
- **A1:** Expresses four of the six terms as powers of either generator correctly (may omit identity and generator itself)
- **A1:** Expresses all six terms correctly in terms of either 3 or 5 (Do not need to give both)

uestion	Scheme	Marks	AOs
10(a)	P_{n-1} is the population at the end of year $n-1$ and this is increased by 10% by the end of year n , so is multiplied by $110\% = 1.1$ to give $1.1 \times P_{n-1}$ as new population by natural causes	B1	3.3
	Q is subtracted from $1.1 \times P_{n-1}$ as Q is the number of deer removed from the estate	B1	3.4
	So $P_n = 1.1P_{n-1} - Q$, $P_0 = 5000$ as population at start is 5000 and $n \in \mathbb{Z}^+$	B1	1.1b
		(3)	
(b)	Let $n = 0$, then $P_0 = (5000 - 10Q)(1.1)^0 + 10Q = 5000$ so result is true when $n = 0$	B1	2.1
	Assume result is true for $n = k$, $P_k = (1.1)^k (5000 - 10Q) + 10Q$, then as $P_{k+1} = 1.1P_k - Q$, so $P_{k+1} =$	M1	2.4
	$P_{k+1} = 1.1 \times 1.1^{k} (5000 - 10Q) + 1.1 \times 10Q - Q$	A1	1.1b
	So $P_{k+1} = (5000 - 10Q)(1.1)^{k+1} + 10Q$,	A1	1.1b
	Implies result holds for $n = k + 1$ and so by induction $P_n = (5000 - 10Q)(1.1)^n + 10Q$, is true for all integer n	B1	2.2a
		(5)	
(c)	For $Q < 500$ the population of deer will grow, for $Q > 500$ the population of deer will fall	B1	3.4
	For $Q = 500$ the population of deer remains steady at 5000,	B1	3.4
		(2)	

Notes:

(a)

B1: Need to see 10% increase linked to multiplication by scale factor 1.1

B1: Needs to explain that subtraction of Q indicates the removal of Q deer from population

Needs complete explanation with mention of $P_n = 1.1P_{n-1} - Q$, $P_0 = 5000$ being the **B1**: initial number of deer

(b)

B1: Begins proof by induction by considering n = 0

M1: Assumes result is true for n = k and uses iterative formula to consider n = k + 1

A1: Correct algebraic statement

Correct statement for k + 1 in required form **A1:**

B1: Completes the inductive argument

(c)

B1: Consideration of both possible ranges of values for Q as listed in the scheme

B1: Gives the condition for the steady state