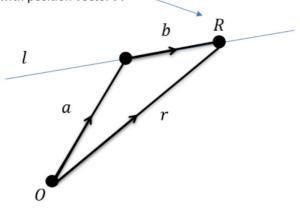
Vector equations of lines

Some arbitrary point on the line, with position vector \boldsymbol{r} .



Equation of straight line:

$$(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$$

or $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$

Find the vector equation of the line through the points (1,2,-1) and (3,-2,2) in the form $(r-a)\times b=0$ and in the form $r\times b=a\times b$.

4. The plane Π has equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

The point A has coordinates (4, -3, c)

(a) Find, in terms of c, an equation for the line that passes through the point A and is perpendicular to the plane Π . Give your answer in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$

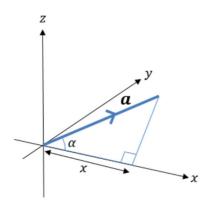
(3)

The point A' is a reflection of the point A in the plane Π

(b) Find, in terms of c, the coordinates of the point A'

(5)

Ratio of cosines of angles with each axis



Recall from Pure Year 2 that if a vector

$$a = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, then from the diagram we can

see that

$$\cos\alpha = \frac{x}{|a|}$$

where α is the angle between \boldsymbol{a} and the x-axis.

Similarly
$$\cos \beta = \frac{y}{|a|}$$
 and $\cos \gamma = \frac{z}{|a|}$

Thus
$$\hat{a} = \frac{a}{|a|} = \begin{pmatrix} \frac{x}{|a|} \\ \frac{y}{|a|} \\ \frac{z}{|a|} \end{pmatrix} = \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix}$$

Recall that \hat{a} is the unit vector scaled version of a.

Since \hat{a} is a unit vector, $|\hat{a}| = \sqrt{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma} = 1$

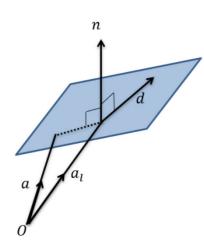
If α , β and γ are the angles between a vector α and each of the coordinate axes, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

This is sometimes written as $l^2+m^2+n^2=1$ Where l,m and n are the cosines of angles with each axis

A line L makes angles of α , β and γ with the x, y and z-axes respectively. Show that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$.

Plane using vectors/lines on plane

Find, in the form $\mathbf{r} \cdot \mathbf{n} = p$, an equation of the plane which contains the line l and the point with position vector \boldsymbol{a} where l has the equation $\boldsymbol{r} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$ and $\boldsymbol{a} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$ Find also the Cartesian form of the equation.



Key strategy:

A. Identify two vectors on the plane.

B. n is cross product of these (as perpendicular to both)

C. Use $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ as usual.

Find, in the form $\mathbf{r} \cdot \mathbf{n} = p$, an equation of the plane which contains the line l and the point with position vector \boldsymbol{a} where l has the equation $\boldsymbol{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ and $\boldsymbol{a} = \begin{pmatrix} 9 \\ 8 \\ 5 \end{pmatrix}$

Find also the Cartesian form of the equation.

A plane Π passes through the points A(2,2-1), B(3,2,-1), C(4,3,5) Find the equation of the plane Π in the form ${\bf a}+\lambda {\bf b}+\mu {\bf c}$

Find the Cartesian equation of the same plane Π .

[June 2015 Q5] The points
$$A$$
, B and C have position vectors $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

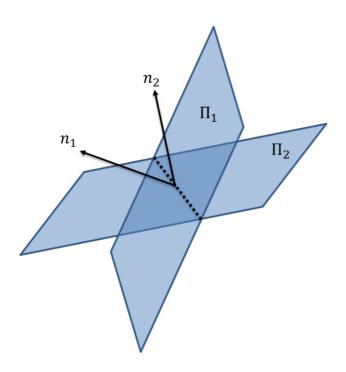
respectively.

The plane Π contains the points A, B and C.

(c) Find a vector equation of Π in the form $\mathbf{r} \cdot \mathbf{n} = p$.

Intersecting Planes

Find the equation of the line of intersection of the planes Π_1 and Π_2 where Π_1 has equation $\mathbf{r}\cdot(2\mathbf{i}-2\mathbf{j}-\mathbf{k})=2$ and Π_2 has equation $\mathbf{r}\cdot(\mathbf{i}-3\mathbf{j}+\mathbf{k})=5$.



Shortest Distance between Skew Lines

Find the shortest distance between the two skew lines with equations ${m r}={m i}+\lambda({m j}+{m k})$ and

 $r = -i + 3j - k + \mu(2i - j - k)$, where λ and μ are scalars.

Shortest distance between 2 skew lines:

$$r = a + \lambda b$$
$$r = c + \mu d$$

$$= \left| \frac{(a-c) \cdot (b \times d)}{|b \times d|} \right|$$

Test Your Understanding

[June 2009 Q7] The lines l1 and l2 have equations

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \quad \text{and} \quad \mathbf{r} = \begin{pmatrix} \alpha \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$

For other values of α , the lines l_1 and l_2 do not intersect and are skew lines.

Given that $\alpha = 2$,

(c) find the shortest distance between the lines l_1 and l_2 .

(3)