2F Problem Solving with Tangents & Normals

1. The point $P(at^2, 2at)$ lies on the parabola *C* with equation $y^2 = 4ax$ where *a* is a positive constant. Show that an equation of the normal to *C* at *P* is $y + tx = 2at + at^3$

- 2. The point $(ct, \frac{c}{t})$, $t \neq 0$, lies on the rectangular hyperbola H with equation $xy = c^2$ where c is a positive constant.
- a) Show that an equation of the tangent to *H* at *P* is $x + t^2y = 2ct$.

A rectangular hyperbola *G* has equation xy = 9. The tangent to *G* at the point *A* and the tangent to *G* at the point *B* meet at the point (-1,7).

b) Find the coordinates of *A* and *B*.

- 3. The parabola *C* has equation $y^2 = 20x$. The point $P(5p^2, 10p)$ is a general point on *C*. The line *l* is normal to *C* at the point *P*.
- a) Show that an equation for l is $px + y = 10p + 5p^3$

The point *P* lies on *C*. The normal to *C* at *P* passes through the point (30,0) as shown on the diagram. The region *R* is bounded by this line, the curve *C* and the *x*-axis.

b) Given that *P* lies in the first quadrant, show that the area of the shaded region *R* is $\frac{1100}{3}$