2F Problem Solving with Tangents \& Normals

1. The point $P\left(a t^{2}, 2 a t\right)$ lies on the parabola C with equation $y^{2}=4 a x$ where a is a positive constant. Show that an equation of the normal to C at P is $y+t x=2 a t+a t^{3}$
2. The point $\left(c t, \frac{c}{t}\right), t \neq 0$, lies on the rectangular hyperbola H with equation $x y=c^{2}$ where c is a positive constant.
a) Show that an equation of the tangent to H at P is $x+t^{2} y=2 c t$.

A rectangular hyperbola G has equation $x y=9$. The tangent to G at the point A and the tangent to G at the point B meet at the point $(-1,7)$.
b) Find the coordinates of A and B.
3. The parabola C has equation $y^{2}=20 x$. The point $P\left(5 p^{2}, 10 p\right)$ is a general point on C. The line l is normal to C at the point P.
a) Show that an equation for l is $p x+y=10 p+5 p^{3}$

The point P lies on C. The normal to C at P passes through the point $(30,0)$ as shown on the diagram. The region R is bounded by this line, the curve C and the x-axis.
b) Given that P lies in the first quadrant, show that the area of the shaded region R is $\frac{1100}{3}$

