2E Tangents \& Normals

1. The point P, where $x=2$, lies on the rectangular hyperbola H with equation $x y=8$. Find:
a) The equation of the tangent T.
b) The equation of the normal N to H at the point P, giving your answer in the form $a x+b y+$ $c=0$.
2. The distinct points A and B , where $x=3$ lie on the parabola C with equation $y^{2}=27 x$.
a) The line l_{1} is the tangent to C at A and the line l_{2} is the tangent to C at B . Given that at $A, y>0$, find the coordinates of A and B.
b) Draw a sketch showing the parabola C . Indicate $\mathrm{A}, \mathrm{B}, l_{1}$ and l_{2}.
c) Find equations for l_{1} and l_{2}, giving your answer in the form $a x+b y+c=0$.
3. The point P with coordinates $(75,30)$ lies on the parabola C with equation $y^{2}=12 x$. Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$
4. The point $P(4,8)$ lies on the parabola C with equation $y^{2}=4 a x$. Find:
a) The value of a
b) An equation of the normal to C at P

The normal to C at P cuts the parabola again at the point Q. Find:
c) The coordinates of Q
d) The length $P Q$, giving your answer as a simplified surd

