2A Parametrics Revisited

circle

ellipse

1. A curve has parametic equations

$$
x=a t^{2}, \quad y=2 a t, \quad t \in \mathbb{R}
$$

where a is a positive constant. Find the Cartesian equation of the curve
2.

A curve has parametric equations

$$
x=c t, y=\frac{c}{t}, t \neq 0
$$

where c is a positive constant.
a) Find the Cartesian equation of the curve.
b) Hence sketch the curve

2B Parabolas

1. Find the equation of the parabola with:
a) focus: $(7,0)$ and directrix $x+7=0$
b) focus $\left(\frac{\sqrt{3}}{4}, 0\right)$ and directrix $x=-\frac{\sqrt{3}}{4}$
2. Find the coordinates of the focus and an equation of the directrix of a parabola with equation:
a) $y^{2}=24 x$
b) $y^{2}=\sqrt{32} x$

2C Parabolas \& Chords

1. A point $P(8,-8)$ lies on the parabola C with equation $y^{2}=8 x$. The point S is the focus of the parabola. The line I passes through S and P.
a) Find the coordinates of S.
b) Find an equation for l, giving your answers in the form $a x+b y+c=0$, where a, b, c are integers.
c) The line l meets the parabola C again at the point Q. The point M is the mid-point of $P Q$. Find the coordinates of Q.
d) Find the coordinates of M.
e) Draw a sketch showing parabola C, the line l and the points P, Q, S and M.
2. The parabola C has general point $\left(a t^{2}, 2 a t\right)$. The line $x=k$ intersects C at the points P and Q. Find, in terms of a and k, the length of the chord $P Q$.

3. The rectangular hyperbola H has Cartesian equation $x y=64$. The line l with equation $x+2 y-36=0$ intersects the curve at the points P and Q.
a) Find the coordinates of P and Q.
b) Find the equation of the perpendicular bisector of $P Q$ in the form $y=m x+c$.

2E Tangents \& Normals

1. The point P, where $x=2$, lies on the rectangular hyperbola H with equation $x y=8$. Find:
a) The equation of the tangent T.
b) The equation of the normal N to H at the point P, giving your answer in the form $a x+b y+$ $c=0$.
2. The distinct points A and B , where $x=3$ lie on the parabola C with equation $y^{2}=27 x$.
a) The line l_{1} is the tangent to C at A and the line l_{2} is the tangent to C at B . Given that at $A, y>0$, find the coordinates of A and B.
b) Draw a sketch showing the parabola C . Indicate $\mathrm{A}, \mathrm{B}, l_{1}$ and l_{2}.
c) Find equations for l_{1} and l_{2}, giving your answer in the form $a x+b y+c=0$.
3. The point P with coordinates $(75,30)$ lies on the parabola C with equation $y^{2}=12 x$. Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$
4. The point $P(4,8)$ lies on the parabola C with equation $y^{2}=4 a x$. Find:
a) The value of a
b) An equation of the normal to C at P

The normal to C at P cuts the parabola again at the point Q. Find:
c) The coordinates of Q
d) The length $P Q$, giving your answer as a simplified surd

2F Problem Solving with Tangents \& Normals

1. The point $P\left(a t^{2}, 2 a t\right)$ lies on the parabola C with equation $y^{2}=4 a x$ where a is a positive constant. Show that an equation of the normal to C at P is $y+t x=2 a t+a t^{3}$
2. The point $\left(c t, \frac{c}{t}\right), t \neq 0$, lies on the rectangular hyperbola H with equation $x y=c^{2}$ where c is a positive constant.
a) Show that an equation of the tangent to H at P is $x+t^{2} y=2 c t$.

A rectangular hyperbola G has equation $x y=9$. The tangent to G at the point A and the tangent to G at the point B meet at the point $(-1,7)$.
b) Find the coordinates of A and B.
3. The parabola C has equation $y^{2}=20 x$. The point $P\left(5 p^{2}, 10 p\right)$ is a general point on C. The line l is normal to C at the point P.
a) Show that an equation for l is $p x+y=10 p+5 p^{3}$

The point P lies on C. The normal to C at P passes through the point $(30,0)$ as shown on the diagram. The region R is bounded by this line, the curve C and the x-axis.
b) Given that P lies in the first quadrant, show that the area of the shaded region R is $\frac{1100}{3}$

2G Loci

1. The curve C is the locus of points that are equidistant from the line with equation $x+6=0$ and the point $(6,0)$. Prove that C has Cartesian equation $y^{2}=4 a x$, stating the value of a.
2. The point P lies on a parabola with equation $y^{2}=4 a x$. Show that the locus of the midpoints of $O P$ is a parabola.
