QQQ - Core Pure Yr1 - Chapter 2 - Complex Numbers & Argand Diagrams

Total Marks: 22

(22 = Platinum, 20 = Gold, 18 = Silver, 16 = Bronze)

- 1. Given that $z = 1 + \sqrt{3}i$ and that $\frac{w}{z} = 2 + 2i$, find
 - (a) w in the form a + ib, where $a, b \in \mathbb{R}$,

(3)

(b) the argument of w,

(2)

(c) the exact value for the modulus of w.

(2)

On an Argand diagram, the point A represents z and the point B represents w.

(d) Draw the Argand diagram, showing the points A and B.

(2)

(e) Find the distance AB, giving your answer as a simplified surd.

(2)

2. $z = 4\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right), \text{ and } w = 3\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right).$

Express zw in the form $r(\cos \theta + i \sin \theta)$, r > 0, $-\pi < \theta < \pi$.

(3)

3. (a) Shade on an Argand diagram the set of points

$$\left\{z \in \mathbb{C} : \left|z - 4i\right| \leqslant 3\right\} \cap \left\{z \in \mathbb{C} : -\frac{\pi}{2} < \arg(z + 3 - 4i) \leqslant \frac{\pi}{4}\right\}$$

(6)

The complex number w satisfies

$$|w - 4i| = 3$$

(b) Find the maximum value of $\arg w$ in the interval $(-\pi, \pi]$. Give your answer in radians correct to 2 decimal places.

(2)