Lower 6 Chapter 11

Vectors

Chapter Overview

- 1. Add/scale factors and show vectors are parallel.
- 2. Calculate magnitude and direction of a vector.
- 3. Understand and use position vectors.
- 4. Solve geometric problems.
- 5. Understand speed vs velocity.

9 Vectors	9.1	Use vectors in two dimensions.	Students should be familiar with column vectors and with the use of ${f i}$, and ${f j}$ unit vectors.
	9.2	Calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form.	Students should be able to find a unit vecto in the direction of \mathbf{a} , and be familiar with the notation $ \mathbf{a} $
	9.3	Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.	The triangle and parallelogram laws of addition. Parallel vectors.
	9.4	Understand and use position vectors; calculate the distance between two points represented by position vectors.	$\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ The distance <i>d</i> between two points (x_1, y_1) and (x_2, y_2) is given by $d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$
	9.5	Use vectors to solve problems in pure mathematics and in context, (including forces).	For example, finding position vector of the fourth corner of a shape (e.g. parallelogram) $ABCD$ with three given position vectors for the corners A, B and $Cfinding position vector of a point C on a linethrough A and B dividing AB in a givenratio, where position vectors of A and B aregiven.$
			Contexts such as velocity, displacement, kinematics and forces will be covered in Paper 3, Sections 6.1, 7.3 and 8.1–8.4

Vector basics

Whereas a **coordinate** represents a **position** in space, a **vector** represents a **displacement** in space.

- A vector has 2 properties:
 - Direction
 - <u>Magnitude</u> (i.e. length)

If *P* and *Q* are points then \overrightarrow{PQ} is the vector between them.

- If two vectors \overrightarrow{PQ} and \overrightarrow{RS} have the same magnitude and direction, they're the same vector and are parallel.
- $\overrightarrow{AB} = -\overrightarrow{BA}$ and the two vectors are parallel, equal in magnitude but in **opposite directions**.
- Triangle Law for vector addition:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

The vector of multiple vectors is known as the **resultant vector.** (you will encounter this term in Mechanics)

• Vector subtraction is defined using vector addition and negation: a - b = a + (-b)

• The zero vector **0** (a bold 0), represents no movement.

$$\overrightarrow{PQ} + \overrightarrow{QP} = \mathbf{0}$$

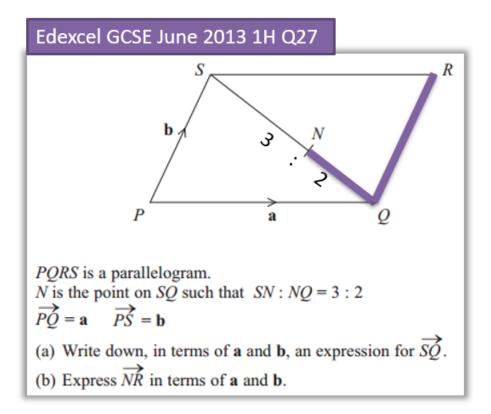
In 2D: $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- A scalar is a normal number, which can be used to 'scale' a vector.
 - The direction will be the same.
 - But the magnitude will be different (unless the scalar is 1).

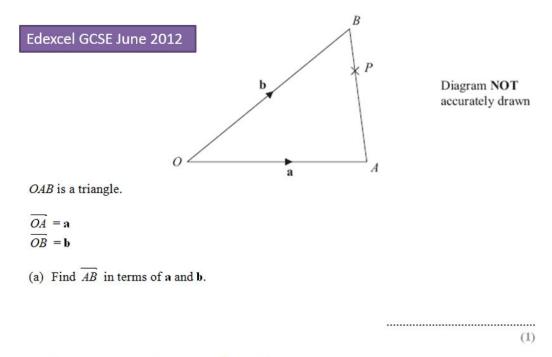
• Any vector parallel to the vector \boldsymbol{a} can be written as $\lambda \boldsymbol{a}$, where λ is a scalar.

The implication is that if we can write one vector **as a multiple of** another, then we can show they are parallel.

<u>Example</u>



Test your understanding



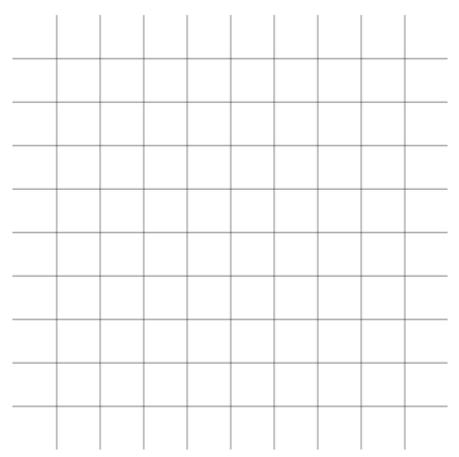
P is the point on *AB* such that AP : PB = 3 : 1

(b) Find OP in terms of a and b. Give your answer in its simplest form.

.....

Exercise 11A Pg 234/235

Representing vectors



A **unit vector** is a vector of magnitude 1.

i and *j* are unit vectors in the *x*-axis and *y*-axis respectively. We can write all vectors in terms of *i* and *j*.

<u>Example</u>

If $\boldsymbol{a} = 3\boldsymbol{i}$, $\boldsymbol{b} = \boldsymbol{i} + \boldsymbol{j}$, $\boldsymbol{c} = \boldsymbol{i} - 2\boldsymbol{j}$ then:

- 1) Write *a* in vector form.
- 2) Find $\boldsymbol{b} + 2\boldsymbol{c}$ in $\boldsymbol{i}, \boldsymbol{j}$ form.

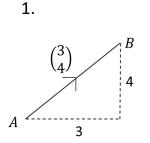
Exercise 11B Pg 237/238

Magnitude of a vector

The magnitude |a| of a vector a is its length.

If
$$\boldsymbol{a} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 $|\boldsymbol{a}| = \sqrt{x^2 + y^2}$

Examples:



2.
$$\boldsymbol{a} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
 3. $\boldsymbol{b} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

Direction of a Vector

The direction of a vector can be found using basic trigonometry.

Examples

1. Find the angle that vector $\boldsymbol{a} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ makes with the positive x axis.

2. Find the angle that vector $\boldsymbol{b} = \begin{pmatrix} -5 \\ -12 \end{pmatrix}$ makes with \boldsymbol{j} .

Unit vector

A unit vector is a vector whose magnitude is 1.

If \boldsymbol{a} is a vector, then the unit vector $\widehat{\boldsymbol{a}}$ in the same direction is

$$\widehat{a} = \frac{a}{|a|}$$

Example:

Find a unit vector in the direction of $\boldsymbol{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Test Your Understanding: Convert the following vectors to unit vectors.

$$\boldsymbol{a} = \begin{pmatrix} 12\\ -5 \end{pmatrix} \qquad \qquad \boldsymbol{b} = \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Exercise 11C Pg 240/241

Position vectors

A vector used to represent a position is unsurprisingly known as a **position vector**.

A position can be thought of as a translation from the origin.

The position vector of a point A is the vector \overrightarrow{OA} , where O is the origin. \overrightarrow{OA} is usually written as **a**.

Examples

1. The points A and B have coordinates (3,4) and (11,2) respectively. Find, in terms of *i* and *j*:

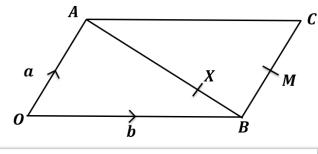
- a) The position vector of A
- b) The position vector of *B*
- c) The vector \overrightarrow{AB}

2. $\overrightarrow{OA} = 5i - 2j$ and $\overrightarrow{AB} = 3i + 4j$. Find:

a) The position vector of *B*.

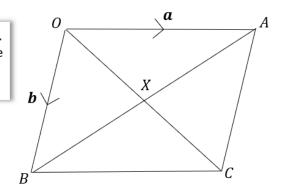
b) The exact value of $|\overrightarrow{OB}|$ in simplified surd form.

Solving Geometric Problems

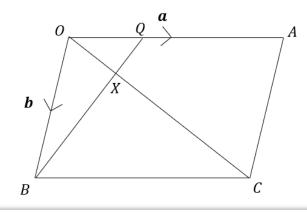


X is a point on AB such that AX: XB = 3: 1. M is the midpoint of BC. Show that \overrightarrow{XM} is parallel to \overrightarrow{OC} .

OACB is a parallelogram, where $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. The diagonals *OC* and *AB* intersect at a point *X*. Prove that the diagonals bisect each other. (*Hint: Perhaps find* \overrightarrow{OX} in two different ways?)



Test your understanding



- In the above diagram, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and $\overrightarrow{OQ} = \frac{1}{3}a$. We wish to find the ratio OX: XC. a) If $\overrightarrow{OX} = \lambda \overrightarrow{OC}$, find an expression for \overrightarrow{OX} in terms of a, b and λ . b) If $\overrightarrow{BX} = \mu \overrightarrow{BQ}$, find an expression for \overrightarrow{OX} in terms of a, b and μ . c) By comparing coefficients or otherwise, determine the value of λ , and hence the ratio OX: XC.

If $\overrightarrow{AB} = 3i - 2j$ and $\overrightarrow{AC} = i - 5j$. Determine $\angle BAC$.

Extension

[STEP 2010 Q7]

Relative to a fixed origin O, the points A and B have position vectors a and b, respectively. (The points O, A and B are not collinear.) The point C has position vector c given by $c = \alpha a + \beta b$,

where α and β are positive constants with $\alpha + \beta < 1$. The lines OA and BC meet at the point P with position vector p and the lines OB and AC meet at the point Q with position vector q. Show that

$$\boldsymbol{p} = \frac{\alpha a}{1-\beta}$$

and write down q in terms of α , β and b.

Show further that the point ${\it R}$ with position vector ${\it r}$ given by

$$r = \frac{\alpha a + \beta b}{\alpha + \beta}$$

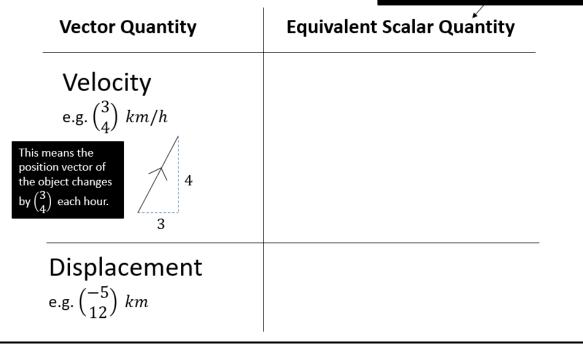
lies on the lines OC and AB.

The lines *OB* and *PR* intersect at the point *S*. Prove that $\frac{OQ}{BQ} = \frac{OS}{BS}$.

Modelling with vectors

In Mechanics, you will see certain things can be represented as a simple number (without direction), or as a vector (with direction):

Remember a 'scalar' just means a normal number (in the context of vectors). It can be obtained using the **magnitude** of the vector.



Examples

- 1. A girl walks 2 km due east from a fixed point *O* to *A*, and then 3 km due south from *A* to *B*. Find
- a) the total distance travelled
- b) the position vector of B relative to O
- c) $|\overrightarrow{OB}|$
- d) The bearing of *B* from *O*.

2. In an orienteering exercise, a cadet leaves the starting point O and walks 15 km on a bearing of 120° to reach A, the first checkpoint. From A he walks 9 km on a bearing of 240° to the second checkpoint, at B. From B he returns directly to O.

Find:

- a) the position vector of A relative to O
- b) $\left| \overrightarrow{OB} \right|$
- c) the bearing of *B* from *O*
- d) the position vector of B relative O.