9.9) Using second derivatives

Find the interval on which the function is concave:

$$
f(x)=x^{3}-2 x+5
$$

$$
g(x)=2 x^{3}-5 x^{2}-6
$$

Find the interval on which the function is concave:

$$
\begin{gathered}
h(x)=x^{3}+4 x+3 \\
x \leq 0
\end{gathered}
$$

Find the interval on which the function is convex:

$$
\begin{aligned}
& f(x)=x^{3}-2 x+5 \\
& g(x)=2 x^{3}-5 x^{2}-6
\end{aligned}
$$

Find the interval on which the function is convex:

$$
\begin{gathered}
h(x)=x^{3}+4 x+3 \\
x \geq 0
\end{gathered}
$$

Show that the function is convex for all real values of x :

$$
f(x)=e^{3 x}+x^{2}
$$

$$
g(x)=e^{4 x}+x^{4}
$$

Show that the function is convex for all real values of x :

$$
h(x)=e^{2 x}+x^{2}
$$

Shown that $h^{\prime \prime}(x) \geq 0$ for $x \in \mathbb{R}$

Your turn

Determine if there is a point of inflection on the curve with equation $y=(x-3)^{4}$

Determine if there is a point of inflection on the curve with equation $y=(x+5)^{4}$

No

$$
\frac{d^{2} y}{d x^{2}}=12(x+5)^{2} \geq 0
$$

Either side of $x=-5, \frac{d^{2} y}{d x^{2}}$ always
positive.
Therefore local minimum at $(-5,0)$

Your turn

A curve C has equation

$$
y=\frac{1}{4} x^{2} \ln x-3 x+7, x>0
$$

Find where C is convex

A curve C has equation

$$
y=\frac{1}{5} x^{2} \ln x+4 x-3, x>0
$$

Find where C is convex

$$
x \geq e^{-\frac{3}{2}}
$$

