9.9) Using second derivatives

Worked example	Your turn
Find the interval on which the function is	Find the interval on which the function is
concave:	concave:
$f(x) = x^3 - 2x + 5$	$h(x) = x^3 + 4x + 3$
	$x \leq 0$
$g(x) = 2x^3 - 5x^2 - 6$	

Worked example	Your turn
Find the interval on which the function is	Find the interval on which the function is
convex: $f(x) = x^3 - 2x + 5$	convex: $h(x) = x^3 + 4x + 3$
	$x \ge 0$
$g(x) = 2x^3 - 5x^2 - 6$	

Worked example	Your turn
Show that the function is convex for all real values of x: $f(x) = e^{3x} + x^2$	Show that the function is convex for all real values of x : $h(x) = e^{2x} + x^2$ Shown that $h''(x) \ge 0$ for $x \in \mathbb{R}$
$g(x) = e^{4x} + x^4$	

Worked example	Your turn
Determine if there is a point of inflection on the curve with equation $y = (x - 3)^4$	Determine if there is a point of inflection on the curve with equation $y = (x + 5)^4$
	No $\frac{d^2y}{dx^2} = 12(x+5)^2 \ge 0$ Either side of $x = -5$, $\frac{d^2y}{dx^2}$ always positive. Therefore local minimum at (-5,0)

Your turn
A curve C has equation
$y = \frac{1}{5}x^2 \ln x + 4x - 3, x > 0$
Find where C is convex
$x \ge e^{-\frac{3}{2}}$