9.8) Implicit differentiation

Your turn

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(y^{4}\right) \\
\frac{d}{d x}\left(3 y^{5}\right)
\end{gathered}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(2 y^{3}\right) \\
& 6 y^{2} \frac{d y}{d x}
\end{aligned}
$$

Your turn

Find:

$$
\begin{aligned}
& \frac{d}{d x}(\cos y) \\
& \frac{d}{d x}(\tan 2 y)
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}(\sin 3 y) \\
& 3 \cos 3 y \frac{d y}{d x}
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{y}\right) \\
& \frac{d}{d x}\left(e^{2 y}\right)
\end{aligned}
$$

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{3 y}\right) \\
& 3 e^{3 y} \frac{d y}{d x}
\end{aligned}
$$

Your turn

Find:

$$
\begin{aligned}
& \frac{d}{d x}(x y) \\
& \frac{d}{d x}\left(x^{2} y\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{3} y\right) \\
x^{3} \frac{d y}{d x}+3 x^{2} y
\end{gathered}
$$

Your turn

Find:

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x y}\right) \\
& \frac{d}{d x}\left(e^{x^{2} y}\right)
\end{aligned}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(e^{x^{3} y}\right) \\
\left(x^{3} \frac{d y}{d x}+3 x^{2} y\right) e^{x^{3} y}
\end{gathered}
$$

Worked example
Find:

$$
\begin{gathered}
\frac{d}{d x}(\cos (x+y)) \\
\frac{d}{d x}\left(\tan \left(x^{2}-4 y\right)\right)
\end{gathered}
$$

Find:

$$
\begin{gathered}
\frac{d}{d x}\left(\sin \left(x^{3}+5 y\right)\right) \\
\left(3 x^{2}+5 \frac{d y}{d x}\right)\left(\cos \left(x^{3}+5 y\right)\right)
\end{gathered}
$$

Your turn

Find $\frac{d y}{d x}$ where:

$$
x^{4}-x+y^{2}-3 y=5
$$

Find $\frac{d y}{d x}$ where:

$$
x^{3}+x+y^{3}+3 y=6
$$

$$
\frac{d y}{d x}=\frac{-3 x^{2}-1}{3 y^{2}+3}
$$

Find $\frac{d y}{d x}$ at the point $(1,1)$, given that:

$$
6 x^{2} y-\frac{4 x}{y^{2}}=2
$$

Find $\frac{d y}{d x}$ at the point $(1,1)$, given that:

$$
\begin{gathered}
4 x y^{2}+\frac{6 x^{2}}{y}=10 \\
\frac{d y}{d x}=-8
\end{gathered}
$$

Worked example

Your turn

A curve is described by:

$$
x^{3}+4 y^{2}=-12 x y
$$

Find the gradient of the curve at the points where $x=8$

A curve is described by:

$$
x^{3}-4 y^{2}=12 x y
$$

Find the gradient of the curve at the points where $x=-8$

$$
\begin{gathered}
\frac{d y}{d x}=-3 \text { at }(-8,16) \\
\frac{d y}{d x}=0 \text { at }(-8,8)
\end{gathered}
$$

Your turn

$$
x^{2}+y^{2}+20 x+4 y-8 x y=-75
$$ Find the values of y for which $\frac{d y}{d x}=0$

$$
x^{2}+y^{2}+10 x+2 y-4 x y=10
$$ Find the values of y for which $\frac{d y}{d x}=0$

$$
y=\frac{7}{3}, 5
$$

Worked example

Your turn

A curve has equation

$$
x^{2}+4 x y+y^{2}-x=35
$$

Find the equation of the tangent to the curve at the point $(2,3)$.
Give your answer in the form $a x+b y+c=0$, where a, b and c are integers

A curve has equation

$$
x^{2}+2 x y-y^{2}+x=20
$$

Find the equation of the tangent to the curve at the point $(3,2)$.
Give your answer in the form $a x+b y+c=0$, where a, b and c are integers

$$
11 x+2 y-37=0
$$

Your turn

The curve $y e^{-4 x}=4 x-y^{2}$.
Find the equation of the normal(s) to the curve at the point where $x=0$.
Give your answer in the form $a x+b y+c=0$

The curve $y e^{-2 x}=2 x+y^{2}$.
Find the equation of the normal(s) to the curve at the point where $x=0$.
Give your answer in the form $a x+b y+c=0$

$$
\begin{gathered}
2 x+y=0 \text { at }(0,0) \\
x-4 y+4=0 \text { at }(0,1)
\end{gathered}
$$

