9.8) Implicit differentiation

Worked example	Your turn
Find: $\frac{d}{dx}(y^4)$	Find: $\frac{d}{dx}(2y^3)$ $6y^2\frac{dy}{dx}$
$\frac{d}{dx}(3y^5)$	

Worked example	Your turn
Find: $\frac{d}{dx}(\cos y)$	Find: $\frac{d}{dx}(\sin 3y)$ $3\cos 3y\frac{dy}{dx}$
$\frac{d}{dx}(\tan 2y)$	

Worked example	Your turn
Find: $\frac{d}{dx}(e^{y})$	Find: $\frac{d}{dx}(e^{3y})$ $3e^{3y}\frac{dy}{dx}$
$\frac{d}{dx}(e^{2y})$	

Worked example	Your turn
Find: $\frac{d}{dx}(xy)$	Find: $\frac{d}{dx}(x^{3}y)$ $x^{3}\frac{dy}{dx} + 3x^{2}y$
$\frac{d}{dx}(x^2y)$	

Worked example	Your turn
Find:	Find:
$\frac{d}{dx}(e^{xy})$	$\frac{d}{dx}(e^{x^3y})$
	$\frac{d}{dx}(e^{x^3y})$ $\left(x^3\frac{dy}{dx}+3x^2y\right)e^{x^3y}$
$\frac{d}{dx}(e^{x^2y})$	

Worked example	Your turn
Find: $\frac{d}{dx}(\cos(x+y))$	Find: $\frac{d}{dx}(\sin(x^3 + 5y))$ $\left(3x^2 + 5\frac{dy}{dx}\right)(\cos(x^3 + 5y))$
$\frac{d}{dx}(\tan(x^2-4y))$	

Worked example	Your turn
Find $\frac{dy}{dx}$ where: $x^4 - x + y^2 - 3y = 5$	Find $\frac{dy}{dx}$ where: $x^3 + x + y^3 + 3y = 6$
	$\frac{dy}{dx} = \frac{-3x^2 - 1}{3y^2 + 3}$

Worked example	Your turn
Worked example Find $\frac{dy}{dx}$ at the point (1, 1), given that: $6x^2y - \frac{4x}{y^2} = 2$	Find $\frac{dy}{dx}$ at the point (1, 1), given that: $4xy^2 + \frac{6x^2}{y} = 10$ $\frac{dy}{dx} = -8$

Worked example	Your turn
A curve is described by: $x^{3} + 4y^{2} = -12xy$ Find the gradient of the curve at the points where $x = 8$	A curve is described by: $x^3 - 4y^2 = 12xy$ Find the gradient of the curve at the points where $x = -8$ $\frac{dy}{dx} = -3$ at $(-8, 16)$ $\frac{dy}{dx} = 0$ at $(-8, 8)$

Worked example	Your turn
$x^2 + y^2 + 20x + 4y - 8xy = -75$	$x^2 + y^2 + 10x + 2y - 4xy = 10$
Find the values of y for which $\frac{dy}{dx} = 0$	Find the values of y for which $\frac{dy}{dx} = 0$
	$y = \frac{7}{3}, 5$

Worked example	Your turn
A curve has equation $x^2 + 4xy + y^2 - x = 35$ Find the equation of the tangent to the curve at the point (2, 3). Give your answer in the form $ax + by + c = 0$, where a, b and c are integers	A curve has equation $x^2 + 2xy - y^2 + x = 20$ Find the equation of the tangent to the curve at the point (3, 2). Give your answer in the form $ax + by + c = 0$, where a, b and c are integers
	11x + 2y - 37 = 0

Worked example	Your turn
The curve $ye^{-4x} = 4x - y^2$. Find the equation of the normal(s) to the curve at the point where $x = 0$. Give your answer in the form $ax + by + c = 0$	The curve $ye^{-2x} = 2x + y^2$. Find the equation of the normal(s) to the curve at the point where $x = 0$. Give your answer in the form $ax + by + c = 0$
	2x + y = 0 at (0,0)

x - 4y + 4 = 0 at (0, 1)