9.7) Parametric differentiation

Your turn

Find the gradient at the point P where $t=3, \quad$ Find the gradient at the point P where $t=2$, on the curve given parametrically by

$$
x=t^{2}-t, \quad y=\mathrm{t}^{4}-2, \quad \mathrm{t} \in \mathbb{R}
$$

$$
x=t^{3}+t, \quad y=\mathrm{t}^{2}+1, \quad \mathrm{t} \in \mathbb{R}
$$

$$
\frac{4}{13}
$$

Your turn

Find the equation of the tangent at the point where $t=\frac{\pi}{6}$, to the curve with parametric equations

$$
x=\sqrt{5} \sin 2 t, \quad y=8 \cos ^{2} t, \quad 0 \leq t \leq \pi
$$

Find the equation of the tangent at the point where $t=\frac{\pi}{3}$, to the curve with parametric equations

$$
\begin{gathered}
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t \leq \pi \\
y=2 x-2
\end{gathered}
$$

Your turn

Find the equation of the normal at the point where $\theta=\frac{\pi}{3}$, to the curve with parametric equations

$$
x=2 \cos \theta, \quad y=7 \sin \theta
$$

Find the equation of the normal at the point where $\theta=\frac{\pi}{6}$, to the curve with parametric equations

$$
\begin{gathered}
x=3 \sin \theta, \quad y=5 \cos \theta \\
y=\frac{3 \sqrt{3}}{5} x+\frac{8 \sqrt{3}}{5}
\end{gathered}
$$

