9.5) The quotient rule

Differentiate with respect to x :

$$
y=\frac{3 x}{5 x-2}
$$

Differentiate with respect to x :

$$
y=\frac{x}{2 x+5}
$$

$$
\frac{d y}{d x}=\frac{5}{(2 x+5)^{2}}
$$

Differentiate with respect to x :

$$
y=\frac{x^{2}}{\ln 5 x}
$$

$$
y=\frac{\ln 4 x}{x^{4}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\frac{x^{3}}{\ln 3 x} \\
\frac{d y}{d x}=\frac{x^{2}(3 \ln 3 x-1)}{(\ln 3 x)^{2}}
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\frac{\cos 3 x}{x^{4}}
$$

$$
f(x)=\frac{x^{4}}{\cos 3 x}
$$

Differentiate with respect to x :

$$
y=\frac{\sin 4 x}{x^{3}}
$$

$$
\frac{d y}{d x}=\frac{4 x \cos 4 x-3 \sin 4 x}{x^{4}}
$$

Find the stationary point of

$$
y=\frac{\cos x}{e^{3 x}}, 0<x<\pi
$$

Find the stationary point of

$$
y=\frac{\sin x}{e^{2 x}}, 0<x<\pi
$$

(0.464, 0.177) (3 dp)

Your turn

Find the equation of the tangent to the curve $y=\frac{e^{\frac{1}{4} x}}{x}$ at the point ($4, \frac{1}{4} e$)

Find the equation of the tangent to the
curve $y=\frac{e^{\frac{1}{2} x}}{x}$ at the point ($2, \frac{1}{2} e$)

$$
y=\frac{1}{2} e
$$

