9.4) Solving triangle problems

Your turn

Calculate the value of x

Calculate the area of the parallelogram

Calculate the area of the parallelogram

$57.32 \mathrm{~cm}^{2}$ (2 dp)

Worked example

Your turn

Calculate the area of the kite

Calculate the area of the kite

$58.34 \mathrm{~cm}^{2}$ (2 dp)

Worked example

Your turn

The diagram shows the locations of four mobile phone masts in a field.
$B C=75 \mathrm{~m}, C D=80 \mathrm{~m}$, angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$.
In order that the masts do not interfere with each other, they must be at least 65 m apart.
Given that A is the minimum distance from D, find:
a) The distance A is from B
b) The angle $B A D$
c) The area enclosed by the four masts.

The diagram shows the locations of four mobile phone masts in a field.
$B C=75 \mathrm{~m}, C D=80 \mathrm{~m}$, angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$.
In order that the masts do not interfere with each other, they must be at least 70 m apart.
Given that A is the minimum distance from D, find:
a) The distance A is from B
b) The angle $B A D$
c) The area enclosed by the four masts.
a) $9.21 \mathrm{~m}(3 \mathrm{sf})$
b) 50.3° (3 sf)
c) $4940 \mathrm{~m}^{2}(3 \mathrm{sf})$

