9.5) Vertical motion under gravity

Worked example

Your turn

A book falls off the top shelf of a bookcase. The shelf is 2.8 m above a wooden floor. Find:
(a) the time the book takes to reach the floor,
(b) the speed with which the book strikes the floor.

A book falls off the top shelf of a bookcase.
The shelf is 1.4 m above a wooden floor. Find:
(a) the time the book takes to reach the floor,
(b) the speed with which the book strikes the floor.
a) 0.53 s
b) $5.2 \mathrm{~ms}^{-1}$

Your turn

A ball is projected vertically upwards, from a point X which is 5 m above the ground, with speed $15 \mathrm{~ms}^{-}$ ${ }^{1}$. Find
(a) the greatest height above the ground reached by the ball,
(b) the time of flight of the ball

A ball is projected vertically upwards, from a point X which is 7 m above the ground, with speed $21 \mathrm{~ms}^{-}$
${ }^{1}$. Find
(a) the greatest height above the ground reached by the ball,
(b) the time of flight of the ball
a) $30 \mathrm{~m}(2 \mathrm{sf})$
b) $4.6 \mathrm{~s}(2 \mathrm{sf})$

Worked example

Your turn

A ball is projected vertically upwards from ground level at a speed of $40 \mathrm{~ms}^{-1}$.
Determine the amount of time the ball is at least 20m above ground level.

A ball is projected vertically upwards from ground level at a speed of $20 \mathrm{~ms}^{-1}$.
Determine the amount of time the ball is at least 10m above ground level.

$$
2.9 \mathrm{~s}(2 \mathrm{sf})
$$

Worked example

Your turn

A ball is projected vertically upwards with initial speed of $20 \mathrm{~ms}^{-1}$.
It hits the ground $5 s$ later.
Find the height above the ground from which the ball was thrown.

A ball is projected vertically upwards with initial speed of $15 \mathrm{~ms}^{-1}$.
It hits the ground $5 s$ later.
Find the height above the ground from which the ball was thrown.
47.5 m

Your turn

A stone is thrown vertically upward from a point which is 8 m above the ground with speed $5 \mathrm{~ms}^{-1}$. Find:
a) The time of flight of the stone
b) The total distance travelled by the stone

A stone is thrown vertically upward from a point which is 5 m above the ground with speed $8 \mathrm{~ms}^{-1}$. Find:
a) The time of flight of the stone
b) The total distance travelled by the stone
a) $2.1 \mathrm{~s}(2 \mathrm{sf})$
b) 12 m (2 sf)

Your turn

Ball A falls vertically from rest from the top of a tower 48 m high. At the same time as A begins to fall, another ball B is projected vertically upwards from the bottom of the tower with speed $24 \mathrm{~ms}^{-1}$. The balls collide. Find the distance to the point where the balls collide from the bottom of the tower.

Ball A falls vertically from rest from the top of a tower $63 m$ high. At the same time as A begins to fall, another ball B is projected vertically upwards from the bottom of the tower with speed $21 \mathrm{~ms}^{-1}$. The balls collide. Find the distance to the point where the balls collide from the bottom of the tower.

19 m (2 sf)

Your turn

At time $t=0$, two balls A and B are projected vertically upwards. Ball A is projected upwards with speed $3 \mathrm{~ms}^{-1}$ from a point 40 m above the horizontal ground. Ball B is projected vertically upwards from the ground with speed $30 \mathrm{~ms}^{-1}$. The balls are modelled as particles moving freely under gravity. Find the time and the height at which the balls are at the same vertical height.

At time $t=0$, two balls A and B are projected vertically upwards. Ball A is projected upwards with speed $2 \mathrm{~ms}^{-1}$ from a point 50 m above the horizontal ground. Ball B is projected vertically upwards from the ground with speed $20 \mathrm{~ms}^{-1}$. The balls are modelled as particles moving freely under gravity. Find the time and the height at which the balls are at the same vertical height.

$$
\begin{aligned}
t & =2.8 s(2 \mathrm{sf}) \\
h & =18 m(2 \mathrm{sf})
\end{aligned}
$$

Worked example

Your turn

A ball is released from rest at a point which is 20 m above a wooden floor. Each time the ball strikes the floor, it rebounds with $\frac{2}{3}$ of the speed with which it strikes the floor.
Find the greatest height above the floor reached by the ball:
a) The first time it rebounds from the floor
b) The second time it rebounds from the floor.

A ball is released from rest at a point which is 10 m above a wooden floor. Each time the ball strikes the floor, it rebounds with $\frac{3}{4}$ of the speed with which it strikes the floor.
Find the greatest height above the floor reached by the ball:
a) The first time it rebounds from the floor
b) The second time it rebounds from the floor.
a) $5.6 \mathrm{~m}(2 \mathrm{sf})$
b) $3.2 \mathrm{~m}(2 \mathrm{sf})$

