9.4) The product rule

Your turn

Differentiate with respect to x :

$$
y=x^{2} e^{3 x}
$$

$$
f(x)=x^{5} e^{2 x}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=x^{3} e^{2 x} \\
\frac{d y}{d x}=x^{2} e^{2 x}(2 x+3)
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=x^{2} \ln 3 x
$$

$$
f(x)=x^{4} \ln 5 x
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=x^{3} \ln 2 x \\
\frac{d y}{d x}=x^{2}(1+3 \ln 2 x)
\end{gathered}
$$

Differentiate with respect to x :

$$
y=2 x^{3}(4 x-5)^{6}
$$

$$
f(x)=6 x^{5}(4 x-3)^{2}
$$

Differentiate with respect to x :

$$
y=3 x^{2}(6 x-5)^{4}
$$

$$
\frac{d y}{d x}=6 x(6 x-5)^{3}(18 x-5)
$$

Your turn

Differentiate with respect to x :

$$
y=x^{3} \sin x
$$

$$
f(x)=x^{4} \cos x
$$

Differentiate with respect to x :

$$
y=x^{2} \sin x
$$

$$
\frac{d y}{d x}=x(x \cos x+2 \sin x)
$$

Differentiate with respect to x :
$y=e^{3 x} \sin ^{4} 2 x$

$$
f(x)=e^{2 x} \cos ^{3} 4 x
$$

Differentiate with respect to x :

$$
y=e^{4 x} \sin ^{2} 3 x
$$

$$
\frac{d y}{d x}=e^{4 x} \sin 3 x(6 \cos 3 x+4 \sin 3 x)
$$

Determine the coordinates of the turning point:

$$
\begin{gathered}
y=x e^{3 x} \\
f(x)=x e^{4 x}
\end{gathered}
$$

Determine the coordinates of the turning point:

$$
\begin{aligned}
& y=x e^{2 x} \\
& \left(-\frac{1}{2},-\frac{1}{2 e}\right)
\end{aligned}
$$

Your turn

Differentiate with respect to x :

$$
y=x^{2} \sqrt{5 x-2}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=x^{2} \sqrt{3 x-1} \\
\frac{d y}{d x}=\frac{x(15 x-4)}{2 \sqrt{3 x-1}}
\end{gathered}
$$

Your turn

Find the equation of the tangent to the curve with equation $y=x^{2} \sin \left(x^{2}\right)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi \sqrt{2}}{8}\right)$ in the form $a x+b y+c=0$ where a, b and c are exact constants.

Find the equation of the tangent to the curve with equation $y=x^{2} \cos \left(x^{2}\right)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi \sqrt{2}}{8}\right)$ in the form $a x+b y+c=0$ where a, b and c are exact constants.

$$
\sqrt{2 \pi}(\pi-4) x+8 y-\pi \sqrt{2}\left(\frac{\pi-2}{2}\right)=0
$$

Differentiate with respect to x :

$$
\frac{d y}{d x}=\frac{1}{5 x(x+1)^{\frac{1}{2}}}
$$

Differentiate with respect to x :

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{6 x(x-1)^{\frac{1}{2}}} \\
\frac{d^{2} y}{d x^{2}} & =\frac{2-3 x}{12 x^{2}(x-1)^{\frac{3}{2}}}
\end{aligned}
$$

