9.4) The product rule

Worked example	Your turn
Differentiate with respect to x: $y = x^2 e^{3x}$	Differentiate with respect to x : $y = x^3 e^{2x}$
	$\frac{dy}{dx} = x^2 e^{2x} (2x+3)$
$f(x) = x^5 e^{2x}$	

Worked example	Your turn
Differentiate with respect to x : $y = x^2 \ln 3x$	Differentiate with respect to x : $y = x^3 \ln 2x$
	$\frac{dy}{dx} = x^2(1+3\ln 2x)$
$f(x) = x^4 \ln 5x$	

Your turn
Differentiate with respect to x: $y = 3x^2(6x - 5)^4$
$\frac{dy}{dx} = 6x(6x - 5)^3(18x - 5)$

Worked example	Your turn
Differentiate with respect to x : $y = x^3 \sin x$	Differentiate with respect to x : $y = x^2 \sin x$
	$\frac{dy}{dx} = x(x\cos x + 2\sin x)$
$f(x) = x^4 \cos x$	

Worked example	Your turn
Differentiate with respect to x: $y = e^{3x} \sin^4 2x$	Differentiate with respect to x: $y = e^{4x} \sin^2 3x$
	$\frac{dy}{dx} = e^{4x} \sin 3x \left(6 \cos 3x + 4 \sin 3x\right)$
$f(x) = e^{2x} \cos^3 4x$	

Worked example	Your turn
Determine the coordinates of the turning point: $y = xe^{3x}$	Determine the coordinates of the turning point: $y = xe^{2x}$ $\left(-\frac{1}{2}, -\frac{1}{2e}\right)$
$f(x) = xe^{4x}$	

Worked example	Your turn
Find the equation of the tangent to the curve with $\sqrt{2}$	Find the equation of the tangent to the curve with $\sqrt{2}$
equation $y = x^2 \sin(x^2)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi\sqrt{2}}{8}\right)$ in	equation $y = x^2 \cos(x^2)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi\sqrt{2}}{8}\right)$ in
the form $ax + by + c = 0$ where a, b and c are	the form $ax + by + c = 0$ where a, b and c are
exact constants.	exact constants.
	$\sqrt{2\pi}(\pi - 4)x + 8y - \pi\sqrt{2}\left(\frac{\pi - 2}{2}\right) = 0$