9.4) Constant acceleration formulae 2

Worked example	Your turn
Use the equations $v = u + at$ and $s = \left(\frac{u+v}{2}\right)t$ to derive: $v^2 = u^2 + 2as$	Use the equations $v = u + at$ and $s = \left(\frac{u+v}{2}\right)t$ to derive: $s = ut + \frac{1}{2}at^2$
	Shown
$s = vt - \frac{1}{2}at^2$	

Worked example	Your turn
A particle is moving along a straight line from A to B with constant acceleration $3 m s^{-2}$. The velocity of the particle is $5 m s^{-1}$ in the direction \overrightarrow{AB} . The velocity of the particle at B is $81 m s^{-1}$ in the same direction. Find the distance from A to B.	A particle is moving along a straight line from A to B with constant acceleration $5 m s^{-2}$. The velocity of the particle is $3 m s^{-1}$ in the direction \overrightarrow{AB} . The velocity of the particle at B is $18 m s^{-1}$ in the same direction. Find the distance from A to B. 31.5 m

Worked example	Your turn
A particle is moving in a straight horizontal line with constant deceleration 6 ms ⁻² . At time $t = 0$ the particle passes through a point 0 with speed 23 ms ⁻¹ travelling towards a point A , where $0A = 40$ m. Find: (a) the times when the particle passes through A (b) the value of t when the particle returns to 0 .	A particle is moving in a straight horizontal line with constant deceleration 4 ms ⁻² . At time $t = 0$ the particle passes through a point 0 with speed 13 ms ⁻¹ travelling towards a point A , where $0A = 20$ m. Find: (a) the times when the particle passes through A (b) the value of t when the particle returns to 0 . a) $t = 2.5$ s, $t = 4$ s b) $t = 6.5$ s

Worked example	Your turn
A particle is moving in a straight horizontal line with constant deceleration 6 ms ⁻² . At time $t = 0$ the particle passes through a point 0 with speed 23 ms ⁻¹ . Find the total distance travelled by the particle between when it first passes 0 and returns to 0	A particle is moving in a straight horizontal line with constant deceleration 4 ms ⁻² . At time $t = 0$ the particle passes through a point 0 with speed 13 ms ⁻¹ . Find the total distance travelled by the particle between when it first passes 0 and returns to 0 42.25 m

Worked example	Your turn
 Two particles P and Q are moving along the same straight horizontal line with constant accelerations 2 and 4 ms⁻² respectively. At time t = 0, P passes through a point A with speed 12 ms⁻¹. One second later Q passes through A with speed 6 ms⁻¹, moving in the same direction as P. a) Find the value of t where the particles meet. b) Find the distance of A from the point where the particles meet. 	 Two particles P and Q are moving along the same straight horizontal line with constant accelerations 6 and 8 ms⁻² respectively. At time t = 0, P passes through a point A with speed 10 ms⁻¹. One second later Q passes through A with speed 5 ms⁻¹, moving in the same direction as P. a) Find the value of t where the particles meet. b) Find the distance of A from the point where the particles meet. a) t = 13.1 s (3 sf) b) 644 m (3 sf)

Worked example	Your turn
A particle moves in a straight horizontal line with constant acceleration from A to B, then B to C. AB = 3 km and BC = 12 km. It takes 2 hour from A to B and 4 hours from B to C. Find: a) The acceleration of the particle b) The particle's speed as it passes A	A particle moves in a straight horizontal line with constant acceleration from A to B, then B to C. AB = 4 km and BC = 12 km. It takes 2 hours from A to B and 3 hours from B to C. Find: a) The acceleration of the particle b) The particle's speed as it passes A a) 0.8 km $h^{-2} = 6.1728 \times 10^{-5} ms^{-2}$ (3 sf) b) 1.2 km $h^{-1} = 0.333 ms^{-1}$ (3 sf)