9.4) Constant acceleration formulae 2

## Your turn

Use the equations $v=u+a t$ and $s=\left(\frac{u+v}{2}\right) t$ to derive:
$v^{2}=u^{2}+2 a s$

$$
s=v t-\frac{1}{2} a t^{2}
$$

Use the equations $v=u+a t$ and $s=\left(\frac{u+v}{2}\right) t$ to derive:
$s=u t+\frac{1}{2} a t^{2}$
Shown

## Your turn

A particle is moving along a straight line from $A$ to $B$ with constant acceleration $3 \mathrm{~ms}^{-2}$. The velocity of the particle is $5 \mathrm{~ms}^{-1}$ in the direction $\overrightarrow{A B}$.
The velocity of the particle at $B$ is $81 \mathrm{~ms}^{-1}$ in the same direction. Find the distance from $A$ to $B$.

A particle is moving along a straight line from $A$ to $B$ with constant acceleration $5 \mathrm{~ms}^{-2}$. The velocity of the particle is $3 \mathrm{~ms}^{-1}$ in the direction $\overrightarrow{A B}$.
The velocity of the particle at $B$ is $18 \mathrm{~ms}^{-1}$ in the same direction.
Find the distance from $A$ to $B$.
31.5 m

## Worked example

## Your turn

A particle is moving in a straight horizontal line with constant deceleration $6 \mathrm{~ms}^{-2}$. At time $t=0$ the particle passes through a point $O$ with speed $23 \mathrm{~ms}^{-1}$ travelling towards a point $A$, where $O A=40 \mathrm{~m}$. Find:
(a) the times when the particle passes through $A$
(b) the value of $t$ when the particle returns to $O$.

A particle is moving in a straight horizontal line with constant deceleration $4 \mathrm{~ms}^{-2}$.
At time $t=0$ the particle passes through a point $O$ with speed $13 \mathrm{~ms}^{-1}$ travelling towards a point $A$, where $O A=20 \mathrm{~m}$. Find:
(a) the times when the particle passes through $A$
(b) the value of $t$ when the particle returns to $O$.
a) $t=2.5 \mathrm{~s}, t=4 \mathrm{~s}$
b) $t=6.5 \mathrm{~s}$

## Worked example

## Your turn

A particle is moving in a straight horizontal line with constant deceleration $6 \mathrm{~ms}^{-2}$. At time $t=0$ the particle passes through a point $O$ with speed $23 \mathrm{~ms}^{-1}$.
Find the total distance travelled by the particle between when it first passes $O$ and returns to $O$

A particle is moving in a straight horizontal line with constant deceleration $4 \mathrm{~ms}^{-2}$.
At time $t=0$ the particle passes through a point $O$ with speed $13 \mathrm{~ms}^{-1}$.
Find the total distance travelled by the particle
between when it first passes $O$ and returns to $O$

## Worked example

## Your turn

Two particles $P$ and $Q$ are moving along the same straight horizontal line with constant accelerations 2 and $4 \mathrm{~ms}^{-2}$ respectively. At time $t=0, P$ passes through a point $A$ with speed $12 \mathrm{~ms}^{-1}$. One second later $Q$ passes through $A$ with speed $6 \mathrm{~ms}^{-1}$, moving in the same direction as $P$.
a) Find the value of $t$ where the particles meet.
b) Find the distance of $A$ from the point where the particles meet.

Two particles $P$ and $Q$ are moving along the same straight horizontal line with constant accelerations 6 and $8 \mathrm{~ms}^{-2}$ respectively. At time $t=0, P$ passes through a point $A$ with speed $10 \mathrm{~ms}^{-1}$. One second later $Q$ passes through $A$ with speed $5 \mathrm{~ms}^{-1}$, moving in the same direction as $P$.
a) Find the value of $t$ where the particles meet.
b) Find the distance of $A$ from the point where the particles meet.
a) $t=13.1 \mathrm{~s}(3 \mathrm{sf})$
b) $644 \mathrm{~m}(3 \mathrm{sf})$

## Your turn

A particle moves in a straight horizontal line with constant acceleration from $A$ to $B$, then $B$ to $C$. $\mathrm{AB}=3 \mathrm{~km}$ and $\mathrm{BC}=12 \mathrm{~km}$.
It takes 2 hour from $A$ to $B$ and 4 hours from $B$ to C.

Find:
a) The acceleration of the particle
b) The particle's speed as it passes A

A particle moves in a straight horizontal line with constant acceleration from $A$ to $B$, then $B$ to $C$. $\mathrm{AB}=4 \mathrm{~km}$ and $\mathrm{BC}=12 \mathrm{~km}$.
It takes 2 hours from $A$ to $B$ and 3 hours from $B$ to C.

Find:
a) The acceleration of the particle
b) The particle's speed as it passes A
a) $0.8 \mathrm{~km} \mathrm{~h}^{-2}=6.1728 \times 10^{-5} \mathrm{~ms}^{-2}(3 \mathrm{sf})$
b) $1.2 \mathrm{~km} \mathrm{~h}^{-1}=0.333 \mathrm{~ms}^{-1}(3 \mathrm{sf})$

