9.3) Constant acceleration formulae

A cyclist is travelling along a straight road. She accelerates at a constant rate from a velocity of 5 ms^{-1} to a velocity of 7.4 ms^{-1} in 50 seconds.

- Find:
 (a) the distance she travels in these 50 seconds
- (b) her acceleration in these 50 seconds.

Your turn

A cyclist is travelling along a straight road. She accelerates at a constant rate from a velocity of 4 ms^{-1} to a velocity of 7.5 ms^{-1} in 40 seconds. Find:

- (a) the distance she travels in these 40 seconds
- (b) her acceleration in these 40 seconds.
- a) 230 m
- b) $0.0875 \, ms^{-2}$

A particle moves in a straight line from a point A to a point B with a constant deceleration $3 ms^{-2}$. The velocity of the B with a constant deceleration A and A is a constant deceleration A is a const

B with a constant deceleration $3 ms^{-2}$. The velocity of the particle at A is $16 ms^{-1}$ and the velocity of the particle at B is $4 ms^{-1}$. Find:

- (a) the time taken for the particle to move from A to B.
- (b) the distance from *A* to *B*.

After reaching B the particle continues to move along the straight line with constant deceleration $3 \, ms^{-2}$. The particle is at the point C 12 seconds after passing

- through the point *A*. Find:
- (c) the velocity of the particle at C.
- (d) The distance from A to C.

A particle moves in a straight line from a point A to a point B with a constant deceleration $1.5 \, ms^{-2}$. The velocity of the particle at A is $8 \, ms^{-1}$ and the velocity of the particle at B is $2 \, ms^{-1}$. Find:

Your turn

- (a) the time taken for the particle to move from A to B.
- (b) the distance from A to B.

After reaching B the particle continues to move along the straight line with constant deceleration $1.5\ ms^{-2}$. The particle is at the point C 6 seconds after passing through the point A. Find:

- (c) the velocity of the particle at C.
- (d) The distance from A to C.
- a) 4 s
- b) 20 *m*
- c) $1 ms^{-1}$ in the direction \overrightarrow{BA}
- d) 21 m

A car moves from traffic lights along a straight road with

The car starts from rest at the traffic lights and 20 seconds later the car passes a speed-trap where it is registered as travelling at $54 \ km \ h^{-1}$. Find:

(a) the acceleration of the car

constant acceleration.

(b) the distance between the traffic lights and the speed-trap.

Your turn

A car moves from traffic lights along a straight road with constant acceleration.

The car starts from rest at the traffic lights and 30 seconds later the car passes a speed-trap where it is registered as travelling at $45 \ km \ h^{-1}$. Find:

- (a) the acceleration of the car
- (b) the distance between the traffic lights and the speed-trap.

a)
$$\frac{5}{12} ms^{-2} = 0.417 ms^{-2}$$
 (3 sf)

b) 187.5 *m*

Your turn

Use the equations
$$v = u + at$$
 and $s = \left(\frac{u+v}{2}\right)t$ to derive: $v^2 = u^2 + 2as$

Use the equations
$$v=u+at$$
 and $s=\left(\frac{u+v}{2}\right)t$ to derive:
$$s=ut+\frac{1}{2}at^2$$

Shown

$$s = vt - \frac{1}{2}at^2$$

$$= vt - \frac{1}{2}at^2$$

Worked example	Your turn
A particle is moving along a straight line from A to B with constant acceleration $3 ms^{-2}$. The velocity of the particle is $5 ms^{-1}$ in the direction \overline{AB} . The velocity of the particle at B is $81 ms^{-1}$ in the same direction. Find the distance from A to B .	A particle is moving along a straight line from A to B with constant acceleration $5 ms^{-2}$. The velocity of the particle is $3 ms^{-1}$ in the direction \overrightarrow{AB} . The velocity of the particle at B is $18 ms^{-1}$ in the same direction. Find the distance from A to B . $31.5 m$

Your turn

A particle is moving in a straight horizontal line with constant deceleration 6 ms⁻².

At time t=0 the particle passes through a point O with speed 23 ms⁻¹ travelling towards a point A, where OA=40 m. Find:

- (a) the times when the particle passes through \boldsymbol{A}
- (b) the value of t when the particle returns to 0.

A particle is moving in a straight horizontal line with constant deceleration 4 ms⁻².

At time t=0 the particle passes through a point O with speed 13 ms⁻¹ travelling towards a point A, where OA=20 m. Find:

- (a) the times when the particle passes through \boldsymbol{A}
- (b) the value of t when the particle returns to θ .

a)
$$t = 2.5 \text{ s}, t = 4 \text{ s}$$

b)
$$t = 6.5 \text{ s}$$

Your turn

A particle is moving in a straight horizontal line with constant deceleration 6 ms⁻².

At time t=0 the particle passes through a point O with speed 23 ms⁻¹.

Find the total distance travelled by the particle between when it first passes *O* and returns to *O*

A particle is moving in a straight horizontal line with constant deceleration 4 ms⁻².

At time t=0 the particle passes through a point θ with speed 13 ms⁻¹.

Find the total distance travelled by the particle between when it first passes $\boldsymbol{0}$ and returns to $\boldsymbol{0}$

42.25 *m*

Two particles P and Q are moving along the same straight horizontal line with constant accelerations 2 and $4 \, ms^{-2}$ respectively. At time t=0, P passes through a point A with speed $12 \, ms^{-1}$. One second later Q passes through A with speed $6 \, ms^{-1}$, moving in the same direction as P.

- a) Find the value of t where the particles meet.
- b) Find the distance of *A* from the point where the particles meet.

Your turn

Two particles P and Q are moving along the same straight horizontal line with constant accelerations 6 and $8 \, ms^{-2}$ respectively. At time t=0, P passes through a point A with speed $10 \, ms^{-1}$. One second later Q passes through A with speed $5 \, ms^{-1}$, moving in the same direction as P.

- a) Find the value of t where the particles meet.
- b) Find the distance of *A* from the point where the particles meet.
- a) t = 13.1 s (3 sf)
- b) 644 m (3 sf)

Your turn

A particle moves in a straight horizontal line with constant acceleration from A to B, then B to C. AB = 3 km and BC = 12 km. It takes 2 hour from A to B and 4 hours from B to

Find:

- The acceleration of the particle
- The particle's speed as it passes A

A particle moves in a straight horizontal line with constant acceleration from A to B, then B to C. AB = 4 km and BC = 12 km.

It takes 2 hours from A to B and 3 hours from B to C.

Find:

- The acceleration of the particle
- The particle's speed as it passes A

a)
$$0.8 \text{ km } h^{-2} = 6.1728 \times 10^{-5} \text{ ms}^{-2} \text{ (3 sf)}$$

b)
$$1.2 \text{ km } h^{-1} = 0.333 \text{ ms}^{-1} \text{ (3 sf)}$$