9.3) The chain rule

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(4 x^{3}-x\right)^{7} \\
f(x)=\left(7 x^{2}-3 x\right)^{4}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(3 x^{4}+x\right)^{5} \\
\frac{d y}{d x}=5\left(3 x^{4}+x\right)^{4}\left(12 x^{3}+1\right)
\end{gathered}
$$

Differentiate with respect to x :

$$
y=(\ln x)^{3}
$$

$$
f(x)=(\ln x)^{4}
$$

Differentiate with respect to x :

$$
\begin{aligned}
y & =(\ln x)^{5} \\
\frac{d y}{d x} & =\frac{5(\ln x)^{4}}{x}
\end{aligned}
$$

Differentiate with respect to x :

$$
y=e^{x^{2}+x}
$$

$$
f(x)=e^{x^{3}-2 x+1}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=e^{x^{4}-3 x^{2}-1} \\
\frac{d y}{d x}=\left(4 x^{3}-6 x\right) e^{x^{4}-3 x^{2}-1}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(3^{x}+1\right)^{2} \\
f(x)=\left(2^{x}-3 x\right)^{4}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\left(4^{x}-2 x\right)^{3} \\
\frac{d y}{d x}=3\left(4^{x}-2 x\right)^{2}\left(4^{x} \ln 4-2\right)
\end{gathered}
$$

Your turn

Differentiate with respect to x :
$y=\ln (\sin x)$

Differentiate with respect to x :

$$
\begin{gathered}
y=\ln (\cos x) \\
\frac{d y}{d x}=\tan x
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=\ln \left(x^{2}-3 x+4\right)
$$

$$
f(x)=\ln \left(x^{3}-2 x-5\right)
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\ln \left(x^{4}-5 x^{2}-3\right) \\
\frac{d y}{d x}=\frac{4 x^{3}-10 x}{x^{4}-5 x^{2}-3}
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sin 5 x
$$

$$
f(x)=\cos (-4 x)
$$

Differentiate with respect to x :

$$
y=\cos 3 x
$$

$$
\frac{d y}{d x}=-3 \sin 3 x
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sin ^{4} x \\
f(x)=\cos ^{3} x
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sin ^{2} x
$$

$$
\frac{d y}{d x}=2 \sin x \cos x=\sin 2 x
$$

Your turn

Differentiate with respect to x :

$$
\begin{gathered}
y=\sin ^{4} 3 x \\
f(x)=\cos ^{3} 2 x
\end{gathered}
$$

Differentiate with respect to x :

$$
y=\sin ^{2} 3 x
$$

$\frac{d y}{d x}=6 \sin 3 x \cos 3 x=3 \sin 6 x$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sqrt{2 x-1} \\
f(x)=\sqrt[3]{4 x^{2}+5}
\end{gathered}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=\sqrt[4]{2 x^{3}+1} \\
\frac{d y}{d x}=\frac{1}{4}\left(2 x^{3}+1\right)^{-\frac{3}{4}}\left(6 x^{2}\right)
\end{gathered}
$$

Your turn

Differentiate with respect to x :

$$
y=e^{e^{-x}}
$$

Differentiate with respect to x :

$$
\begin{gathered}
y=e^{e^{x}} \\
\frac{d y}{d x}=e^{x}\left(e^{e^{x}}\right)
\end{gathered}
$$

Your turn

A curve C has equation

$$
y=\frac{3}{(2-5 x)^{4}}, x \neq \frac{2}{5}
$$

Find an equation for the normal to C at the point with x-coordinate 1 in the form $a x+$ $b y+c=0$, where a, b and c are integers

A curve C has equation

$$
y=\frac{4}{(3-2 x)^{5}}, x \neq \frac{3}{2}
$$

Find an equation for the normal to C at the point with x-coordinate 2 in the form $a x+$ $b y+c=0$, where a, b and c are integers

$$
x+40 y+158=0
$$

