9.3) The chain rule

Worked example	Your turn
Differentiate with respect to x: $y = (4x^3 - x)^7$	Differentiate with respect to x: $y = (3x^4 + x)^5$
	$\frac{dy}{dx} = 5(3x^4 + x)^4(12x^3 + 1)$
$f(x) = (7x^2 - 3x)^4$	

Worked example	Your turn
Differentiate with respect to x : $y = (\ln x)^3$	Differentiate with respect to x: $y = (\ln x)^5$ $\frac{dy}{dx} = \frac{5(\ln x)^4}{x}$
$f(x) = (\ln x)^4$	

Worked example	Your turn
Differentiate with respect to <i>x</i> : $y = e^{x^2 + x}$	Differentiate with respect to x: $y = e^{x^4 - 3x^2 - 1}$ $\frac{dy}{dx} = (4x^3 - 6x)e^{x^4 - 3x^2 - 1}$
$f(x) = e^{x^3 - 2x + 1}$	

Worked example	Your turn
Differentiate with respect to x: $y = (3^x + 1)^2$	Differentiate with respect to x: $y = (4^x - 2x)^3$
	$\frac{dy}{dx} = 3(4^x - 2x)^2(4^x \ln 4 - 2)$
$f(x) = (2^x - 3x)^4$	

Worked example	Your turn
Differentiate with respect to x : $y = \ln(\sin x)$	Differentiate with respect to x: $y = \ln(\cos x)$
	$\frac{dy}{dx} = \tan x$

Worked example	Your turn
Differentiate with respect to x: $y = \ln(x^2 - 3x + 4)$	Differentiate with respect to x: $y = \ln(x^4 - 5x^2 - 3)$
$f(x) = \ln(x^3 - 2x - 5)$	$\frac{dy}{dx} = \frac{4x^3 - 10x}{x^4 - 5x^2 - 3}$

Worked example	Your turn
Differentiate with respect to x : $y = \sin 5x$	Differentiate with respect to x: $y = \cos 3x$ $\frac{dy}{dx} = -3 \sin 3x$
$f(x) = \cos(-4x)$	

Worked example	Your turn
Differentiate with respect to x : $y = \sin^4 x$	Differentiate with respect to x : $y = \sin^2 x$
	$\frac{dy}{dx} = 2\sin x \cos x = \sin 2x$
$f(x) = \cos^3 x$	

Worked example	Your turn
Differentiate with respect to x : $y = \sin^4 3x$	Differentiate with respect to x : $y = \sin^2 3x$
	$\frac{dy}{dx} = 6\sin 3x \cos 3x = 3\sin 6x$
$f(x) = \cos^3 2x$	

Worked example	Your turn
Differentiate with respect to x:	Differentiate with respect to x:
$y = \sqrt{2x - 1}$	$y = \sqrt[4]{2x^3 + 1}$
	$\frac{dy}{dx} = \frac{1}{4}(2x^3 + 1)^{-\frac{3}{4}}(6x^2)$
$f(x) = \sqrt[3]{4x^2 + 5}$	

Worked example	Your turn
Differentiate with respect to x : $y = e^{e^{-x}}$	Differentiate with respect to x : $y = e^{e^x}$
	$\frac{dy}{dx} = e^x (e^{e^x})$

Worked example	Your turn
Given that $y = \sqrt{2x^5 - 2}$, find $\frac{dy}{dx}$ at (3,22)	Given that $y = \sqrt{5x^2 + 1}$, find $\frac{dy}{dx}$ at (4,9)
	20
	9

Worked example	Your turn
A curve <i>C</i> has equation	A curve C has equation
3 2	4 3
$y = \overline{(2-5x)^4}$, $x \neq \overline{5}$	$y = \frac{1}{(3 - 2x)^5}, x \neq \frac{1}{2}$
Find an equation for the normal to C at the	Find an equation for the normal to C at the
point with x-coordinate 1 in the form $ax + ax + ax + ax$	point with x-coordinate 2 in the form $ax +$
by + c = 0, where a, b and c are integers	by + c = 0, where a, b and c are integers

$$x + 40y + 158 = 0$$