Worked example	Your turn
In $\triangle A B C, A B=8 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and	$\operatorname{In} \triangle A B C, A B=4 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and
$\angle A B C=88^{\circ}$.	$\angle A B C=44^{\circ}$.
Work out the two possible values of	Work out the two possible values of
$\angle A C B$	$\angle A C B \quad 67.9^{\circ}$ and $112^{\circ}(3 \mathrm{sf})$

Given that the angle θ is obtuse, determine θ and hence determine the length of x.

Given that the angle θ is obtuse, determine θ and hence determine the length of x.

$$
\begin{aligned}
& \theta=137^{\circ}(3 \mathrm{sf}) \\
& x=5.75(3 \mathrm{sf})
\end{aligned}
$$

