9.3) Constant acceleration formulae 1

Worked example

Your turn

A cyclist is travelling along a straight road. She accelerates at a constant rate from a velocity of $5 \mathrm{~ms}^{-1}$ to a velocity of $7.4 \mathrm{~ms}^{-1}$ in 50 seconds. Find:
(a) the distance she travels in these 50 seconds (b) her acceleration in these 50 seconds.

A cyclist is travelling along a straight road.
She accelerates at a constant rate from a velocity of $4 \mathrm{~ms}^{-1}$ to a velocity of $7.5 \mathrm{~ms}^{-1}$ in 40 seconds. Find:
(a) the distance she travels in these 40 seconds
(b) her acceleration in these 40 seconds.
a) 230 m
b) $0.0875 \mathrm{~ms}^{-2}$

Your turn

A particle moves in a straight line from a point A to a point B with a constant deceleration $3 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $16 \mathrm{~ms}^{-1}$ and the velocity of the particle at B is $4 \mathrm{~ms}^{-1}$. Find:
(a) the time taken for the particle to move from A to B.
(b) the distance from A to B.

After reaching B the particle continues to move along the straight line with constant deceleration $3 \mathrm{~ms}^{-2}$. The particle is at the point $C 12$ seconds after passing through the point A. Find:
(c) the velocity of the particle at C.
(d) The distance from A to C.

A particle moves in a straight line from a point A to a point B with a constant deceleration $1.5 \mathrm{~ms}^{-2}$. The velocity of the particle at A is $8 \mathrm{~ms}^{-1}$ and the velocity of the particle at B is $2 \mathrm{~ms}^{-1}$. Find:
(a) the time taken for the particle to move from A to B.
(b) the distance from A to B.

After reaching B the particle continues to move along the straight line with constant deceleration $1.5 \mathrm{~ms}^{-2}$.
The particle is at the point $C 6$ seconds after passing through the point A. Find:
(c) the velocity of the particle at C.
(d) The distance from A to C.
a) 4 s
b) 20 m
c) $1 \mathrm{~ms}^{-1}$ in the direction $\overrightarrow{B A}$
d) 21 m

Worked example

Your turn

A car moves from traffic lights along a straight road with constant acceleration.
The car starts from rest at the traffic lights and 20 seconds later the car passes a speed-trap where it is registered as travelling at $54 \mathrm{~km} \mathrm{~h}^{-1}$. Find:
(a) the acceleration of the car
(b) the distance between the traffic lights and the speedtrap.

A car moves from traffic lights along a straight road with constant acceleration.
The car starts from rest at the traffic lights and 30 seconds later the car passes a speed-trap where it is registered as travelling at $45 \mathrm{~km} \mathrm{~h}^{-1}$. Find:
(a) the acceleration of the car
(b) the distance between the traffic lights and the speedtrap.
a) $\frac{5}{12} \mathrm{~ms}^{-2}=0.417 \mathrm{~ms}^{-2}(3 \mathrm{sf})$
b) 187.5 m

