
9.2) Velocity-time graphs



Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                               | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A cyclist is moving along a straight road for a period of 21 seconds. For the first 6 seconds, she moves at a constant speed of 8 ms<sup>-1</sup>. She then decelerates at a constant rate, stopping after a further 15 seconds.</li> <li>(a) Find the displacement from the starting point of the cyclist after this 21 second period.</li> <li>(b) Work out the rate at which the cyclist decelerates.</li> </ul> | <ul> <li>A cyclist is moving along a straight road for a period of 12 seconds. For the first 8 seconds, she moves at a constant speed of 6 m s<sup>-1</sup>. She then decelerates at a constant rate, stopping after a further 4 seconds.</li> <li>(a) Find the displacement from the starting point of the cyclist after this 12 second period.</li> <li>(b) Work out the rate at which the cyclist decelerates.</li> </ul> |
| $v (ms^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                | $v (ms^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                |
| $8 \underbrace{6}_{6} \underbrace{21}_{21} t(s)$                                                                                                                                                                                                                                                                                                                                                                             | 6<br>8 12 t (s)                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | a) 60 m<br>b) $1.5 m s^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of 16 $ms^{-1}$ in $T$ seconds. The particle then travels at a constant velocity of 16 $ms^{-1}$ for $3T$ seconds. The particle then decelerates uniformly to rest in a further 4 s.<br>(a) Sketch a velocity-time graph to illustrate the motion of the particle.<br>Give then the total displacement of the particle is 592m.<br>(b) find the value of $T$ . | A particle moves along a straight line. The particle<br>accelerates uniformly from rest to a velocity of 8 ms <sup>-1</sup> in <i>T</i><br>seconds. The particle then travels at a constant velocity of<br>8 ms <sup>-1</sup> for 5 <i>T</i> seconds. The particle then decelerates<br>uniformly to rest in a further 40 s.<br>(a) Sketch a velocity-time graph to illustrate the motion<br>of the particle.<br>Give then the total displacement of the particle is 600m.<br>(b) find the value of <i>T</i> .<br>a) $v(ms^{-1})$<br>$8 \frac{A}{40} + B \frac{B}{40} + C + C + C + C + C + C + C + C + C + $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Diagrams/Graphs used with permission from prFrostMaths: <u>https://www.drfrostmaths.com/</u>

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A car is travelling along a straight horizontal road. The car takes 60 s to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 15 s until its speed is 11 m s<sup>-1</sup>. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.</li> <li>a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights</li> <li>b) Find the value of T</li> </ul> | A car is travelling along a straight horizontal road. The car takes 120 s to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 30 s until its speed is $22 m s^{-1}$ . The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.<br>a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights<br>b) Find the value of T<br>Speed<br>22<br>30<br>30+T<br>120<br>Time |

b) T = 75

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A car is travelling along a straight horizontal road. The car takes 60 s to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 15 s until its speed is 11 m s<sup>-1</sup>. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.</li> <li>a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights</li> <li>b) Find the value of T</li> </ul> | A car is travelling along a straight horizontal road. The car takes 120 s to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 30 s until its speed is $22 m s^{-1}$ . The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.<br>a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights<br>b) Find the value of T<br>Speed<br>22<br>30<br>30+T<br>120<br>Time |

b) T = 75

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A car is travelling along a straight horizontal road. The car takes 60 s to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 15 s until its speed is $11 \text{ m s}^{-1}$ . The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.<br>A motorcycle leaves the first set of traffic lights. The | A car is travelling along a straight horizontal road. The car takes 120 s to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 30 s until its speed is $22 m s^{-1}$ . The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights. |
| motorcycle moves from rest with constant acceleration,<br>and passes the car at the point $A$ which is 495 $m$ from the<br>first set of traffic lights. When the motorcycle passes the<br>car, the car is moving with speed 11 $ms^{-1}$                                                                                                                                                                                                                                                                        | the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point $A$ which is 990 $m$ from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed 22 $ms^{-1}$                                                                                                                                                      |
| c) Find the time it takes for the motorcycle to move from                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| the first set of traffic lights to the point A                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point <i>A</i>                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) 50 seconds                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Worked example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Your turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A car is moving along a straight horizontal road.<br>At time $t = 0$ , the car is moving with speed $10 ms^{-1}$ and is<br>at the point $A$ . The car maintains this speed for $50 s$ .<br>The car then moves with constant deceleration $0.6 ms^{-2}$ ,<br>reducing its speed from $10 ms^{-1}$ to $4 ms^{-1}$ .<br>The car then moves with constant speed $4 ms^{-1}$ for $30 s$ .<br>The car then moves with constant acceleration until it is<br>moving with speed $10 ms^{-1}$ at the point $B$ .<br>Given that the distance from $A$ to $B$ is 980 $m$ , find the time<br>taken for the car to move from $A$ to $B$ | A car is moving along a straight horizontal road.<br>At time $t = 0$ , the car is moving with speed $20 ms^{-1}$ and is<br>at the point $A$ . The car maintains this speed for 25 $s$ .<br>The car then moves with constant deceleration $0.4 ms^{-2}$ ,<br>reducing its speed from $20 ms^{-1}$ to $8 ms^{-1}$ .<br>The car then moves with constant speed $8 ms^{-1}$ for $60 s$ .<br>The car then moves with constant acceleration until it is<br>moving with speed $20 ms^{-1}$ at the point $B$ .<br>Given that the distance from $A$ to $B$ is 1960 $m$ , find the<br>time taken for the car to move from $A$ to $B$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 155 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |