9.2) Differentiating exponentials and logarithms

Worked example	Your turn
Prove that the derivative of a^{kx} is $a^{kx}k \ln a$	Prove that the derivative of a^x is $a^x \ln a$
	Proof

Worked example	Your turn
Find: $\frac{d}{dx}(5e^{2x})$	Find: $\frac{d}{dx}(2e^{\frac{1}{4}x})$
	$\frac{1}{2}e^{\frac{1}{4}x}$
$\frac{d}{dx}(4e^{\frac{1}{3}x})$	
$\frac{d}{dx}(3e^{-0.5x})$	

Worked example	Your turn
Find: $\frac{d}{dx}(2^x)$	Find: $\frac{d}{dx}(5^x)$
	5 ^{<i>x</i>} ln 5
$\frac{d}{dx}(3^x)$	
$\frac{d}{dx}(4^x)$	

Worked example	Your turn
Find: $\frac{d}{dx}(5(2^x))$	Find: $\frac{d}{dx}(2(5^x))$
	5 ^x 2 ln 5
$\frac{d}{dx}(4(3^x))$	
$\frac{d}{dx}(3(4^x))$	

Worked example	Your turn
Find: $\frac{d}{dx}(2^{5x})$	Find: $\frac{d}{dx}(5^{2x})$
	5 ^{2x} 2 ln 5
$\frac{d}{dx}(3^{4x})$	
$\frac{d}{dx}(4^{3x})$	

Worked example	Your turn
Find: $\frac{d}{dx}(3^x)$	Find: $\frac{d}{dx}(5^x)$
	5 ^x ln 5
$\frac{d}{dx}(x^3)$	$\frac{d}{dx}(x^5)$ $5x^4$

Worked example	Your turn
Find: $\frac{d}{dx}(\ln 2x)$	Find: $\frac{d}{dx}(\ln 5x)$
	$\frac{1}{x}$
$\frac{d}{dx}(\ln 3x)$	
$\frac{d}{dx}(\ln 4x)$	

Worked example	Your turn
Find: $\frac{d}{dx}(2\ln x)$	Find: $\frac{d}{dx}(5\ln x)$
	$\frac{5}{x}$
$\frac{d}{dx}(3\ln x)$	
$\frac{d}{dx}(4\ln x)$	

Worked example	Your turn
Find: $\frac{d}{dx}(\ln x^2)$	Find: $\frac{d}{dx}(\ln x^5)$
	$\frac{5}{x}$
$\frac{d}{dx}(\ln x^3)$	
$\frac{d}{dx}(\ln x^4)$	

Worked example	Your turn
Find: $\frac{d}{dx} \left(\frac{3 + 2e^{5x}}{7e^{4x}} \right)$	Find: $\frac{d}{dx} \left(\frac{2 - 3e^{7x}}{4e^{3x}} \right)$
	$-\frac{3}{2}e^{-3x}-3e^{4x}$
$\frac{d}{dx} \left(\frac{7 - 5e^{-4x}}{3e^{2x}} \right)$	

Worked example	Your turn
Find: $\frac{d}{dx}(e^x - 3)^2$	Find: $\frac{d}{dx}(e^x + 5)^2$
	$2e^{2x} + 10e^{x}$

Worked example	Your turn
The population P of a species after t days can be modelled using $P = 640(2^{-3t})$	The population P of a species after t days can be modelled using $P = 460(3^{-2t})$
 a) Determine how many days have elapsed before there are 20 individuals left b) Determine the rate of change of the population after 3 days. 	 a) Determine how many days have elapsed before there are 20 individuals left b) Determine the rate of change of the population after 3 days. a) 1.43 days b) -1.39 individuals/day

Worked example	Your turn
A curve has the equation $y = e^{4x} - \ln x$	A curve has the equation $y = e^{3x} - \ln x$
Show that the equation of the tangent to the curve at the point with <i>x</i> -coordinate 1 is: $y = (4e^4 - 1)x - 3e^4 + 1$	Show that the equation of the tangent to the curve at the point with <i>x</i> -coordinate 1 is: $y = (3e^3 - 1)x - 2e^3 + 1$
	Shown

Worked example	Your turn
A curve has the equation	A curve has the equation
$y = 5(2^{3x})$	$y = 4(3^{2x})$
Find the equation of the normal to the curve at the point	Find the equation of the normal to the curve at the point
with x-coordinate 1 in the form $y = ax + b$, where a and b	with x-coordinate 1 in the form $y = ax + b$, where a and b
are constants to be found in exact form	are constants to be found in exact form

$$y = -\frac{1}{72 \ln 3} x + \frac{1}{72 \ln 3} + 36$$
$$a = -\frac{1}{72 \ln 3}$$
$$b = \frac{1}{72 \ln 3} + 36$$