9.1) Differentiating sin x and cos x

Worked example

Prove, from first principles, that the derivative of sin x is cos x. You may assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$

Your turn

Prove, from first principles, that the derivative of sin x is cos x. You may assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$

Let
$$f(x) = \sin x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \left(\left(\frac{\cos h - 1}{h} \right) \sin x + \left(\frac{\sin h}{h} \right) \cos x \right)$$

$$= \lim_{h \to 0} ((0) \sin x + (1) \cos x)$$

$$= \cos x$$

Worked example	Your turn
Find: $\frac{d}{dx}(\sin 5x)$	Find: $\frac{d}{dx}(\sin\frac{1}{2}x)$ $\frac{1}{2}\cos 2x$
$\frac{d}{dx}(\cos\frac{1}{2}x)$	$\frac{d}{dx}(\cos 5x)$ $-5\sin 5x$
$\frac{d}{dx}(6\sin 7x - 4\cos 3x)$	$\frac{d}{dx}(7\sin 6x - 3\cos 4x)$ $42\cos 6x + 12\sin 4x$

Worked example	Your turn
Worked example A curve has equation $y = \frac{1}{4}x - \cos 3x$. Find the stationary points on the curve in the interval $0 \le x \le \pi$	Your turn A curve has equation $y = \frac{1}{2}x - \cos 2x$. Find the stationary points on the curve in the interval $0 \le x \le \pi$ (1.70, 1.82) and (3.02, 0.539) (3 sf)

Worked example	Your turn
A curve has equation $y = \sin 5x + 3x$. Find the stationary points on the curve in the interval $0 \le x \le \frac{3}{5}\pi$	A curve has equation $y = \sin 3x + 2x$. Find the stationary points on the curve in the interval $0 \le x \le \frac{2}{3}\pi$ (0.767, 2.279) and (1.328, 1.910) (3 sf)

Worked example	Your turn
A curve has equation $y = \sin 4x - \cos 3x$. Find the equation of the tangent to the curve at the point $(\pi, 1)$	A curve has equation $y = \sin 4x + \cos 3x$. Find the equation of the tangent to the curve at the point $(\pi, -1)$
	$y = 4x - 4\pi - 1$

Worked example	Your turn
A curve has equation $y = 3x^2 - \sin x$. Show that the equation of the normal to the curve at the point with <i>x</i> -coordinate π is $x + (6\pi + 1)y - \pi(18\pi^2 - 3\pi - 1) = 0$	A curve has equation $y = 3x^2 + \sin x$. Show that the equation of the normal to the curve at the point with <i>x</i> -coordinate π is $x + (6\pi - 1)y - \pi(18\pi^2 - 3\pi + 1) = 0$
	Shown