9) Trigonometric ratios

9.1) The cosine rule

9.2) The sine rule

9.3) Areas of triangles
9.4) Solving triangle problems
9.5) Graphs of sine, cosine and tangent
9.6) Transforming trigonometric graphs

Find the value of x

Find the value of x

Find the value of θ

Find the value of θ

Express b in terms of a

$5 a \mathrm{~cm}$

Express p in terms of m

p cm

$$
p=m \sqrt{7}
$$

Worked example
Determine the value of x

Your turn
Determine the value of x

Your turn

Find the size of the smallest angle in a triangle whose sides have lengths $6 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm

Find the size of the smallest angle in a triangle whose sides have lengths $3 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm
29.9° (3 sf)

Coastguard station B is 16 km , on a bearing of 030°, from coastguard station A.
A ship C is 8.4 km on a bearing of 081°, away from A.
Calculate how $\operatorname{far} C$ is from B.

Coastguard station B is 8 km , on a bearing of 060°, from coastguard station A.
A ship C is 4.8 km on a bearing of 018°, away from A.
Calculate how far C is from B.

$$
5.47 \mathrm{~km}(3 \mathrm{sf})
$$

Your turn

Calculate the size of angle MLP

Calculate the size of angle MLP

Find the value of x

Find the value of x

Your turn

Find the value of x

Find the value of x

Your turn

Find x, where $x<90$

Find x, where $x<90$

$$
x=77.61
$$

Worked example	Your turn
In $\triangle A B C, A B=8 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and	$\operatorname{In} \triangle A B C, A B=4 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and
$\angle A B C=88^{\circ}$.	$\angle A B C=44^{\circ}$.
Work out the two possible values of	Work out the two possible values of
$\angle A C B$	$\angle A C B \quad 67.9^{\circ}$ and $112^{\circ}(3 \mathrm{sf})$

Given that the angle θ is obtuse, determine θ and hence determine the length of x.

Given that the angle θ is obtuse, determine θ and hence determine the length of x.

$$
\begin{aligned}
& \theta=137^{\circ}(3 \mathrm{sf}) \\
& x=5.75(3 \mathrm{sf})
\end{aligned}
$$

Calculate the area of the triangle:

5 cm

Calculate the area of the triangle:

10 cm
$51.42 \mathrm{~cm}^{2}$ (2 dp)

The area is $10 \mathrm{~cm}^{2}$.
Angle θ is acute.
Calculate θ

5 cm

The area is $51.42 \mathrm{~cm}^{2}$. Angle θ is acute.
Calculate θ

10 cm

$$
\theta=40.0(3 \mathrm{sf})
$$

The area is 40 . Determine x

The area is 10 . Determine x

$$
x=5
$$

A triangle has sides 5.1 cm ,
3.4 cm and 2.85 cm . Work out the area of the triangle

A triangle has sides 10.2 cm , 6.8 cm and 5.7 cm .

Work out the area of the triangle

Your turn

In $\triangle A B C, A B=2.5 \mathrm{~cm}, B C=3 \mathrm{~cm}$ and $\angle A B C=x$.
Given that the area of $\triangle A B C$ is $3 \mathrm{~cm}^{2}$ and that $A C$ is the longest side, find the value of x

In $\triangle A B C, A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=x$.
Given that the area of $\triangle A B C$ is $12 \mathrm{~cm}^{2}$ and that $A C$ is the longest side, find the value of x

$$
x=127^{\circ}(3 \mathrm{sf})
$$

Your turn

The area of this triangle is 40 . If θ is obtuse, determine θ.

The area of this triangle is 10 . If θ is obtuse, determine θ.

9.4) Solving triangle problems

Your turn

Calculate the value of x

Calculate the area of the parallelogram

Calculate the area of the parallelogram

$57.32 \mathrm{~cm}^{2}$ (2 dp)

Worked example

Your turn

Calculate the area of the kite

Calculate the area of the kite

$58.34 \mathrm{~cm}^{2}$ (2 dp)

Worked example

Your turn

The diagram shows the locations of four mobile phone masts in a field.
$B C=75 \mathrm{~m}, C D=80 \mathrm{~m}$, angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$.
In order that the masts do not interfere with each other, they must be at least 65 m apart.
Given that A is the minimum distance from D, find:
a) The distance A is from B
b) The angle $B A D$
c) The area enclosed by the four masts.

The diagram shows the locations of four mobile phone masts in a field.
$B C=75 \mathrm{~m}, C D=80 \mathrm{~m}$, angle $B C D=55^{\circ}$ and angle $A D C=140^{\circ}$.
In order that the masts do not interfere with each other, they must be at least 70 m apart.
Given that A is the minimum distance from D, find:
a) The distance A is from B
b) The angle $B A D$
c) The area enclosed by the four masts.
a) $9.21 \mathrm{~m}(3 \mathrm{sf})$
b) 50.3° (3 sf)
c) $4940 \mathrm{~m}^{2}(3 \mathrm{sf})$
9.5) Graphs of sine, cosine and tangent ${ }^{\text {Chapter CONTENTS }}$

A sketch of $y=\sin x,-360^{\circ} \leq x \leq 360^{\circ}$ is shown.
Given that $\sin 30=\frac{1}{2}$, find:
a) $\sin \left(150^{\circ}\right)$
b) $\sin \left(-300^{\circ}\right)$
c) $\sin \left(330^{\circ}\right)$
d) $\sin \left(-210^{\circ}\right)$

A sketch of $y=\cos x,-360^{\circ} \leq x \leq 360^{\circ}$ is shown.
Given that $\cos 30=\frac{\sqrt{3}}{2}$, find:
a) $\cos \left(-30^{\circ}\right)$
b) $\cos \left(330^{\circ}\right)$
c) $\cos \left(150^{\circ}\right)$
d) $\cos \left(-210^{\circ}\right)$

a) $\frac{\sqrt{3}}{2}$
b) $\frac{\sqrt{3}}{2}$
c) $-\frac{\sqrt{3}}{2}$
d) $-\frac{\sqrt{3}}{2}$

Your turn

A sketch of $y=\tan x,-360^{\circ} \leq x \leq 360^{\circ}$ is shown.
Given that $\tan 60=\sqrt{3}$, find:
a) $\tan \left(-60^{\circ}\right)$
b) $\tan \left(-300^{\circ}\right)$
c) $\tan \left(120^{\circ}\right)$

A sketch of $y=\tan x,-360^{\circ} \leq x \leq 360^{\circ}$ is shown.
Given that $\tan 30=\frac{\sqrt{3}}{3}$, find:
a) $\tan \left(-30^{\circ}\right)$
b) $\tan \left(-330^{\circ}\right)$
c) $\tan \left(150^{\circ}\right)$

a) $-\frac{\sqrt{3}}{3}$
b) $\frac{\sqrt{3}}{3}$
c) $-\frac{\sqrt{3}}{3}$
9.6) Transforming trigonometric graphs ${ }^{\text {Chapter CONTENTS }}$

Sketch $y=\sin x-2,0 \leq x \leq 360^{\circ}$

Sketch $y=\cos \left(x+45^{\circ}\right), 0 \leq x \leq 360^{\circ}$

Sketch $y=-\sin x, 0 \leq x \leq 360^{\circ}$
Sketch $y=-\tan x, 0 \leq x \leq 360^{\circ}$

