9) Constant acceleration

.1) Displacement-time graphs	
.2) Velocity-time graphs	

9.1) Displacement-time graphs

Chapter CONTENTS

Your turn

Describe the motion of each object from the displacement-time graph:

Describe the motion of each object from the displacement-time graph:

Object is accelerating

A cyclist rides in a straight line for 30 minutes. She waits for a quarter of an hour, then returns in a straight line to her starting point in 25 minutes.

- a) Work out the average velocity for each stage of the journey in km h⁻¹.
- b) Write down the average velocity for the whole journey.
- c) Work out average speed for the whole jo

Your turn

A cyclist rides in a straight line for 20 minutes. She waits for half an hour, then returns in a straight line to her starting point in 15 minutes.

- a) Work out the average velocity for each stage of the journey in km h⁻¹.
- b) Write down the average velocity for the whole journey.
- c) Work out average speed for the whole

- a) OA: 15 $km \ h^{-1}$; AB: $0 \ km \ h^{-1}$; BC: $20 \ km \ h^{-1}$
- b) 0
- c) $9.23 \text{ km } h^{-1} (3sf)$

9.2) Velocity-time graphs

Chapter CONTENTS

Your turn

Describe the motion of each object from the velocity-time graph:

Describe the motion of each object from the velocity-time graph:

Object has constant acceleration. Velocity is increasing at a constant rate.

A cyclist is moving along a straight road for a period of 21 seconds. For the first 6 seconds, she moves at a constant speed of 8 ms^{-1} . She then decelerates at a constant rate, stopping after a further 15 seconds.

- (a) Find the displacement from the starting point of the cyclist after this 21 second period.
- (b) Work out the rate at which the cyclist decelerates.

Your turn

A cyclist is moving along a straight road for a period of 12 seconds. For the first 8 seconds, she moves at a constant speed of 6 m s⁻¹. She then decelerates at a constant rate, stopping after a further 4 seconds.

- (a) Find the displacement from the starting point of the cyclist after this 12 second period.
- (b) Work out the rate at which the cyclist decelerates.

a) 60 mb) $1.5 ms^{-2}$

Your turn

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of 16 ms^{-1} in T seconds. The particle then travels at a constant velocity of 16 ms^{-1} for 3T seconds. The particle then decelerates uniformly to rest in a further 4 s.

(a) Sketch a velocity-time graph to illustrate the motion of the particle.

Give then the total displacement of the particle is 592m.

(b) find the value of T.

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of 8 ms⁻¹ in T seconds. The particle then travels at a constant velocity of 8 ms⁻¹ for 5T seconds. The particle then decelerates uniformly to rest in a further 40 s.

(a) Sketch a velocity-time graph to illustrate the motion of the particle.

Give then the total displacement of the particle is 600m.

(b) find the value of T.

a)
$$v (ms^{-1})$$

8

A

B

C

T

5T

40

 $t (s)$

b)
$$T = 10$$

A car is travelling along a straight horizontal road. The car takes 60 s to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 15 s until its speed is $11 m s^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

- a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
- b) Find the value of T

Your turn

A car is travelling along a straight horizontal road. The car takes $120 \, s$ to travel between two sets of traffic lights which are $2145 \, m$ apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 \, s$ until its speed is $22 \, m \, s^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

- Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
- b) Find the value of *T*

b)
$$T = 75$$

A car is travelling along a straight horizontal road. The car takes 60 s to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 15 s until its speed is $11 m s^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

- a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
- b) Find the value of T

Your turn

A car is travelling along a straight horizontal road. The car takes $120 \, s$ to travel between two sets of traffic lights which are $2145 \, m$ apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 \, s$ until its speed is $22 \, m \, s^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

- Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
- b) Find the value of *T*

b)
$$T = 75$$

A car is travelling along a straight horizontal road. The car takes 60 s to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 15 s until its speed is $11 m s^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

A motorcycle leaves the first set of traffic lights $15 \, \mathrm{s}$ after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point A which is $495 \, m$ from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $11 \, ms^{-1}$

c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point *A*

Your turn

A car is travelling along a straight horizontal road. The car takes $120\,s$ to travel between two sets of traffic lights which are $2145\,m$ apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30\,s$ until its speed is $22\,m\,s^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

A motorcycle leaves the first set of traffic lights $10 \, \mathrm{s}$ after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point A which is $990 \, m$ from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $22 \, ms^{-1}$

- c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point *A*
- c) 50 seconds

A car is moving along a straight horizontal road. At time t=0, the car is moving with speed $10\ ms^{-1}$ and is at the point A. The car maintains this speed for $50\ s$. The car then moves with constant deceleration $0.6\ ms^{-2}$, reducing its speed from $10\ ms^{-1}$ to $4\ ms^{-1}$. The car then moves with constant speed $4\ ms^{-1}$ for $30\ s$. The car then moves with constant acceleration until it is moving with speed $10\ ms^{-1}$ at the point B. Given that the distance from A to B is $980\ m$, find the time taken for the car to move from A to B

Your turn

A car is moving along a straight horizontal road. At time t=0, the car is moving with speed $20\ ms^{-1}$ and is at the point A. The car maintains this speed for $25\ s$. The car then moves with constant deceleration $0.4\ ms^{-2}$, reducing its speed from $20\ ms^{-1}$ to $8\ ms^{-1}$. The car then moves with constant speed $8\ ms^{-1}$ for $60\ s$. The car then moves with constant acceleration until it is moving with speed $20\ ms^{-1}$ at the point B. Given that the distance from A to B is $1960\ m$, find the time taken for the car to move from A to B

155 seconds