9) Constant acceleration

9.1) Displacement-time graphs
9.2) Velocity-time graphs

Your turn

Describe the motion of each object from the displacement-time graph:

Describe the motion of each object from the displacement-time graph:

Object is accelerating

Worked example

Your turn

A cyclist rides in a straight line for 30 minutes. She waits for a quarter of an hour, then returns in a straight line to her starting point in 25 minutes.
a) Work out the average velocity for each stage of the journey in $\mathrm{km} \mathrm{h}^{-1}$.
b) Write down the average velocity for the whole journey.
c) Work out average speed for the whole jo

A cyclist rides in a straight line for 20 minutes. She waits for half an hour, then returns in a straight line to her starting point in 15 minutes.
a) Work out the average velocity for each stage of the journey in $\mathrm{km} \mathrm{h}^{-1}$.
b) Write down the average velocity for the whole journey.
c) Work out average speed for the whole $s(k m)$

a) $\mathrm{OA}: 15 \mathrm{~km} \mathrm{~h}^{-1}$; $\mathrm{AB}: 0 \mathrm{~km} \mathrm{~h}{ }^{-1}$; $\mathrm{BC}: 20 \mathrm{~km} \mathrm{~h}{ }^{-1}$
b) 0
c) $9.23 \mathrm{~km} \mathrm{~h}^{-1}(3 \mathrm{sf})$

9.2) Velocity-time graphs

Your turn

Describe the motion of each object from the velocity-time graph:

Describe the motion of each object from the velocity-time graph:

Object has constant acceleration. Velocity is increasing at a constant rate.

Your turn

A cyclist is moving along a straight road for a period of 21 seconds. For the first 6 seconds, she moves at a constant speed of $8 \mathrm{~ms}^{-1}$. She then decelerates at a constant rate, stopping after a further 15 seconds.
(a) Find the displacement from the starting point of the cyclist after this 21 second period.
(b) Work out the rate at which the cyclist decelerates.

A cyclist is moving along a straight road for a period of 12 seconds. For the first 8 seconds, she moves at a constant speed of $6 \mathrm{~m} \mathrm{~s}^{-1}$. She then decelerates at a constant rate, stopping after a further 4 seconds.
(a) Find the displacement from the starting point of the cyclist after this 12 second period.
(b) Work out the rate at which the cyclist decelerates.

a) 60 m
b) $1.5 \mathrm{~ms}^{-2}$

Worked example

Your turn

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of $16 \mathrm{~ms}^{-1}$ in T seconds. The particle then travels at a constant velocity of $16 \mathrm{~ms}^{-1}$ for $3 T$ seconds. The particle then decelerates uniformly to rest in a further 4 s .
(a) Sketch a velocity-time graph to illustrate the motion of the particle.
Give then the total displacement of the particle is 592 m .
(b) find the value of T.

A particle moves along a straight line. The particle accelerates uniformly from rest to a velocity of $8 \mathrm{~ms}^{-1}$ in T seconds. The particle then travels at a constant velocity of $8 \mathrm{~ms}^{-1}$ for $5 T$ seconds. The particle then decelerates uniformly to rest in a further 40 s .
(a) Sketch a velocity-time graph to illustrate the motion of the particle.
Give then the total displacement of the particle is 600 m .
(b) find the value of T.
a) $v\left(m s^{-1}\right)$

b) $T=10$

Worked example

Your turn

A car is travelling along a straight horizontal road. The car takes $120 s$ to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 s$ until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
b) Find the value of T
a)

b) $T=75$

Worked example

Your turn

A car is travelling along a straight horizontal road. The car takes $120 s$ to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 s$ until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
a) Sketch a speed-time graph for the motion of the car between the two sets of traffic lights
b) Find the value of T
a)

b) $T=75$

Worked example

Your turn

A car is travelling along a straight horizontal road. The car takes $60 s$ to travel between two sets of traffic lights which are 1072.5 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $15 s$ until its speed is $11 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.
A motorcycle leaves the first set of traffic lights 15 s after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point A which is 495 m from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $11 \mathrm{~ms}^{-1}$
c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point A

A car is travelling along a straight horizontal road. The car takes $120 s$ to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for $30 s$ until its speed is $22 \mathrm{~m} \mathrm{~s}^{-1}$. The car maintains this speed for T seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

A motorcycle leaves the first set of traffic lights 10 s after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, and passes the car at the point A which is 990 m from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed $22 \mathrm{~ms}^{-1}$
c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point A
c) 50 seconds

Worked example

Your turn

A car is moving along a straight horizontal road. At time $t=0$, the car is moving with speed $10 \mathrm{~ms}^{-1}$ and is at the point A. The car maintains this speed for 50 s . The car then moves with constant deceleration $0.6 \mathrm{~ms}^{-2}$, reducing its speed from $10 \mathrm{~ms}^{-1}$ to $4 \mathrm{~ms}^{-1}$.
The car then moves with constant speed $4 \mathrm{~ms}^{-1}$ for 30 s . The car then moves with constant acceleration until it is moving with speed $10 \mathrm{~ms}^{-1}$ at the point B.
Given that the distance from A to B is $980 m$, find the time taken for the car to move from A to B

A car is moving along a straight horizontal road.
At time $t=0$, the car is moving with speed $20 \mathrm{~ms}^{-1}$ and is at the point A. The car maintains this speed for 25 s .
The car then moves with constant deceleration $0.4 \mathrm{~ms}^{-2}$, reducing its speed from $20 \mathrm{~ms}^{-1}$ to $8 \mathrm{~ms}^{-1}$.
The car then moves with constant speed $8 \mathrm{~ms}^{-1}$ for 60 s . The car then moves with constant acceleration until it is moving with speed $20 \mathrm{~ms}^{-1}$ at the point B.
Given that the distance from A to B is $1960 m$, find the time taken for the car to move from A to B

155 seconds

